Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
B A C N M
a, xét tam giác ABC có CN là pg của ^ACB (gt)
=> BN/NA = BC/AC (Đl) (1)
xét tam giác ABC có AM là pg của ^BAC (gt)
=> BM/CM = AB/AC (đl) (2)
có BC = AB (gt) (3)
(1)(2)(3) => BN/NA = BM/CM
=> MN // AC (đl)
a. Tứ giác ABCD là hình bình hành.
\(\Rightarrow AB=CD\)(tính chất hình bình hành)
và \(AB//CD\Rightarrow\widehat{ABD}=\widehat{BDC}\)(so le trong)
Xét \(\Delta AMB\)và \(\Delta CND\)có:
\(AB=CD\)(cmt)
\(\widehat{ABM}=\widehat{CDN}\)(cmt)
\(BM=DN\)(GT)
\(\Rightarrow\Delta AMB=\Delta CND\left(c.g.c\right)\)
b. Có AC cắt BD tại O
=> O là trung điểm của AC => OA = OC.
=> O là trung điểm của BD => OB = OD.
Có OB = OM + MD
OD = ON + ND
mà OB = OD, MB = ND
=> OM = ON => O là trung điểm của MN.
Trong tứ giác AMCN có:
OA = OC, OM = ON
=> Tứ giác AMCN có 2 đường chéo AC và MN cắt nhau tại trung điểm của mỗi đường nên là hình bình hành.
a/
I là giao điểm của hai đường phân giác
=>IB=IC( tính chất giao điểm của 3 đg phân giác tronh tam giác)
=>tam giác BIC cân tại I
=> g IBC=g ICB
=> g IBD= g ICE
tg IBD và tg ICE, có:
g IDB=g IEC (=90 độ)
g IBD= g ICE
BI=IC
=> tg IBD=tg ICE(ch-gn)
=> ID=IE
mà ADIE là hình vuông(g D= g A=g E=90 độ)
=> ADIE là hình vuông
b/
câu này mk thấy lạ, ADIE la hình vuông thì AD=AE, AB=AC
I là giao điểm của hai đường phân giác
=>IB=IC( tính chất giao điểm của 3 đg phân giác tronh tam giác)
=>tam giác BIC cân tại I
=> g IBC=g ICB
=> g IBD= g ICE
tg IBD và tg ICE, có:
g IDB=g IEC (=90 độ)
g IBD= g ICE
BI=IC
=> tg IBD=tg ICE(ch-gn)
=> ID=IE
từ a nối đến i
Xét tg vuông AID và tg vuông AIE có
ID=IE
AI cạnh chung
=> tg AID =tg AIE (ch-cgv)
=> AD =AE (2 cạnh tương ứng)
a: Xet ΔBCD có
M,N lần lượtlà trung điểm của BC,CD
nên MN là đường trung bình
=>MN//BD và MN=BD/2
Xét ΔEBD có EP/ED=EQ/EB
nên PQ//BD và PQ/BD=EP/ED=1/2
=>MN//PQ và MN=PQ
Xét ΔDEC có DP/DE=DN/DC
nên PN//EC và PN=1/2EC
=>PN=1/2BD=PQ
Xét tứ giác MNPQ có
MN//PQ
MN=PQ
PN=PQ
=>MNPQ là hình thoi
b: NP//AC
=>góc QPN=góc BAC
=>góc NMP=góc EAF
=>PM//AF
c: Xét ΔAIK có
AF vừa là đường cao, vừa là phân giác
nên ΔAIK cân tại A
(3x-2)(2x-1)=(2-3x)(x+3)
(3x-2)(2x-1)-(2-3x)(x+3)=0
(3x-2)(2x-1)+(3x-2)(x+3)=0
(3x-2)(2x-1+x+3)=0
(3x-2)(3x+2)=0
\(\orbr{\begin{cases}3x-2=0\\3x+2=0\end{cases}\Leftrightarrow\orbr{\begin{cases}3x=2\\3x=-2\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=\frac{2}{3}\\x=\frac{-2}{3}\end{cases}}}\)
Vậy........
(=) 6x2 - 3x - 4x - 2 = 2x + 6 - 3x2 -9x
(=) 6x2 +3x2 - 7x + 7x + 2 -6 = 0
(=) 9x2 - 4 = 0
(=) 9x2 = 4
(=) x2 = \(\frac{9}{4}\)
(=) x = +- \(\frac{3}{2}\)