Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: AC=4cm
b: Xét ΔAMH vuông tại H và ΔAMN vuông tại N có
AM chung
\(\widehat{MAH}=\widehat{NAH}\)
Do đó: ΔAMH=ΔAMN
Suy ra: MH=MN; AH=AN
hay AM là đường trung trực của NH
c: Xét ΔAHN có AH=AN
nên ΔAHN cân tại A
mà \(\widehat{HAN}=60^0\)
nên ΔAHN đều
Bạn tự vẽ hình nha
1. a) ta có: tg abc cân => AB=AC; AH vừa là trung tuyến vừa là phân giác của tg abc (1)
=> AH là tia phân giác của góc A
b) từ (1) => AH là trung tuyến của tg abc
=> HB=HC
2. ta có: tg abc cân; ab=ac
=> bd và ce vừa là đường cao vừa là trung tuyến của tg abc
=> ad=dc; ab=be ( mà ab=ac)
=> ae=ad
tg abd= tg ace: ab=ac; góc a chung; ae=ad
=> bd=ce
học tốt nha bạn
a) Xét ΔAHB vuông tại H và ΔAHC vuông tại H có
AB=AC(ΔBAC cân tại A)
AH chung
Do đó: ΔAHB=ΔAHC(cạnh huyền-cạnh góc vuông)
Suy ra: BH=HC(hai cạnh tương ứng)
Sửa đềΔABC vuông tại A
(AH+BC)^2=AH^2+BC^2+2*AH*BC
=AH^2+AB^2+AC^2+2*AB*AC
=AH^2+(AB+AC)^2>(AB+AC)^2
=>AH+BC>AB+AC