K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 7 2018

Tự vẽ hình nha

a) Ta có AE// DF (gt)=> góc DFB= góc ACB (đồng vị)

Mà góc ABC= góc ACB => góc DFB= góc ABC

=> tam giác BDF cân tại D

b) Ta lại có: DB= DF( tam giác BDF cân)

Mà DB=CE(gt) =>DF=CE (1)

Xét tam giác DFM và tam giác ECM có:

góc FDM= góc CEM (DF// AE)

DF= CE( theo 1)

góc DFM= góc ECM (DF//AE)

=> tg DFM=tg ECM (g.c.g)

=> DM=EM (2)

c) Xét tg DCM và tg EFM có:

DM=EM( theo 2)

góc EMF =góc DMC (đối đỉnh)

FM= CM (do tg DFM =tg ECM)

=>tg DCM= tg EFM (c.g.c)

=> DC=FE ; góc DCM= góc EFM => DC//FE

14 tháng 7 2018

B A C D E F M

15 tháng 6 2016

Bài này ta chủ yếu chứng minh các tam giác bằng nhau.

?o?n th?ng f: ?o?n th?ng [B, C] ?o?n th?ng h: ?o?n th?ng [A, B] ?o?n th?ng i: ?o?n th?ng [A, C] ?o?n th?ng k: ?o?n th?ng [C, E] ?o?n th?ng l: ?o?n th?ng [D, E] ?o?n th?ng n: ?o?n th?ng [D, F] ?o?n th?ng p: ?o?n th?ng [D, C] ?o?n th?ng q: ?o?n th?ng [F, E] B = (-0.13, -0.74) B = (-0.13, -0.74) B = (-0.13, -0.74) C = (7.88, -0.74) C = (7.88, -0.74) C = (7.88, -0.74) ?i?m A: ?i?m tr�n g ?i?m A: ?i?m tr�n g ?i?m A: ?i?m tr�n g ?i?m D: ?i?m tr�n h ?i?m D: ?i?m tr�n h ?i?m D: ?i?m tr�n h ?i?m E: ?i?m tr�n j ?i?m E: ?i?m tr�n j ?i?m E: ?i?m tr�n j ?i?m M: Giao ?i?m c?a f, l ?i?m M: Giao ?i?m c?a f, l ?i?m M: Giao ?i?m c?a f, l ?i?m F: Giao ?i?m c?a m, f ?i?m F: Giao ?i?m c?a m, f ?i?m F: Giao ?i?m c?a m, f

a. Xét tam giác BDF cân do có : góc DBF = ACB(Tam giác ABC cân) = DFB (Đồng vị)

b. Xét tam giác FMD và tam giác CME có:

Góc FDM =góc MEC(so le trong)

góc DFM = góc MCE (So le trong)

DF = CE(=DB)

\(\Rightarrow\Delta FMD=\Delta CME\left(g-c-g\right)\Rightarrow MD=ME\) (Hai cạnh tương ứng)

c. Ta có \(\Delta DCM=\Delta EFM\left(c-g-c\right)\Rightarrow DC=EF\)

13 tháng 5 2019

a) Áp dụng định lí Pytago vào \(\Delta ABC\)ta có:

\(BC^2=AB^2+AC^2\)Hay \(BC=\sqrt{6^2+8^2=10}\)

Ủng hộmi nha

13 tháng 5 2019

A B C D E

a) Xét \(\Delta ABC\)vuông tại A, AB = 6cm; AC = 8cm

\(\Rightarrow BC^2=AB^2+AC^2\)

     \(BC^2=6^2+8^2\)

     \(BC^2=36+64\)

    \(BC^2=100\)

    \(BC=10\)

Suy ra cạnh BC = 10cm

b) Xét \(\Delta BAC\)và \(\Delta BED\)ta có:

      \(\widehat{BAC}=\widehat{DEB}=90^o\)

         \(\widehat{B}\)chung

       \(BD=BC\left(gt\right)\)

\(\Rightarrow\Delta BAC=\Delta BED\)

Vậy...     

26 tháng 4 2020

OC CHO BA LA GU

DU MA