Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
xét tam giác ABD và tam giác ACE có:
góc A là góc chung
AB = AC ( tam giác cân tại A)
AD = AE(gt)
suy ra: tam giác ABD= tam giác ACE ( c-g-c)
vậy BD = CE ( 2 góc tương ứng)
Xét 2 tâm giác BEC và tam giác CDB có
BC ( chung )
\(\widehat{ABC}=\widehat{ACB}\) ( theo giả thiết )
\(\widehat{B_2}=\widehat{C_1}\)( hai góc phân giác của 2 góc bằng nhau )
\(\Delta BEC=\Delta CDB\)(g.c.g )
\(\Rightarrow BD=EC\)
a: Xet ΔBAD vuông tại A và ΔBMD vuông tại M có
BD chung
góc ABD=góc MBD
=>ΔBAD=ΔBMD
=>BA=BM
Xét ΔBME vuông tại M và ΔBAC vuông tại A có
BM=BA
góc MBE chung
=>ΔBME=ΔBAC
=>BE=BC
=>ΔBEC cân tại B
b: Xét ΔDAE vuông tại A và ΔDMC vuông tại M co
DA=DM
góc ADE=góc MDC
=>ΔDAE=ΔDMC
=>DE=DC
=>D nằm trên trung trực của EC
mà BK là trung trực của EC
nên B,D,K thẳng hàng
a: Xét ΔCDF vuông tại D và ΔCDK vuông tại D có
CD chung
góc FCD=góc KCD
=>ΔCDF=ΔCDK
b: Xét ΔEDC có góc EDC=góc ECD
nên ΔECD cân tại E
=>EC=ED
=>góc ECD=góc EDC
=>góc EDK=góc EKD
=>ΔKED cân tại E