Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Sửa đề: Chứng minh ΔABM=ΔACM
Xét ΔABM và ΔACM có
AB=AC
BM=CM
AM chung
Do đó: ΔABM=ΔACM
b: Xét ΔMAB và ΔMDC có
MA=MD
\(\widehat{AMB}=\widehat{DMC}\)(hai góc đối đỉnh)
MB=MC
Do đó: ΔMAB=ΔMDC
=>\(\widehat{MAB}=\widehat{MDC}\)
mà hai góc này là hai góc ở vị trí so le trong
nên AB//CD
c: Xét ΔIAB và ΔICE có
IA=IC
\(\widehat{AIB}=\widehat{CIE}\)(hai góc đối đỉnh)
IB=IE
Do đó: ΔIAB=ΔICE
=>\(\widehat{IAB}=\widehat{ICE}\)
mà hai góc này là hai góc ở vị trí so le trong
nên AB//CE
Ta có: AB//CE
AB//CD
CD,CE có điểm chung là C
Do đó: D,C,E thẳng hàng
Ta có: AB=CE(ΔIAB=ΔICE)
AB=CD(ΔIAB=ΔIDC)
Do đó: CE=CD
mà D,C,E thẳng hàng
nên C là trung điểm của DE
a, xét tam giác AMB và tam giác DMC có : MA = MD (gt)
MC = MB do M là trung điểm của BC (gt)
góc DMC = góc BMA (đối đỉnh)
=> tam giác AMB = tam giác DMC (c-g-c)
b, tam giác AMB = tam giác DMC (câu a)
=> góc DCM = góc MAB (đn) mà 2 góc này so le trong
=> DC // AB (đl)
c,
https://olm.vn/thanhvien/cuongktl
SÉT \(\Delta AMC\)VÀ\(\Delta DMB\)CÓ
\(AM=DM\left(gt\right)\)
\(\widehat{AMC}=\widehat{DMB}\left(đđ\right)\)
\(MC=MB\left(gt\right)\)
\(\Rightarrow\Delta AMC=\Delta DMB\left(C-G-C\right)\)
TA CÓ\(\Delta MAB+\Delta AMC=\Delta ABC\)
\(\Delta DMB+\Delta MDC=\Delta DCB\)
MÀ \(\Delta AMC=\Delta DMB\left(cmt\right)\)
\(\Delta MAB=\Delta MDC\left(cmt\right)\)
\(\Rightarrow\Delta ABC=\Delta DCB\)
\(\Rightarrow\widehat{A}=\widehat{D}=90^o\)(HAI GÓC TƯƠNG ỨNG)
VẬY \(\Delta BDC\)TAM GIÁC VUÔNG TẠI D
CM : a) Xét tam giác ABM và tam giác DCM
có MB = MC (gt)
góc AMB = góc DMC ( đối đỉnh)
MA = MD (gt)
=> tam giác ABM = tam giác DCM (c.g.c) (Đpcm)
b) Ta có :tam giác ABM = tam giác DCM (cm câu a)
=> góc B = góc MCD (hai góc tương ứng)
Mà góc B và góc MCD ở vị trí so le trong
=> AB // CD (Đpcm)
c) Ta có : tam giác ABM = tam giác DCM (cm câu a)
=> góc MAB = góc D ( hai góc tương ứng)
=> AB = CD (hai cạnh tương ứng) (1)
Mà AE = EB (2)
CF = FD (3)
Từ (1); (2); (3) suy ra FD= AE
Xét tam giác AME và tam giác DMF
có AM = DM (gt)
góc MAE = góc MDF (cmt)
DF = AE (cmt)
=> tam giác AME = tam giác DMF (c.g.c)
=> MF = ME (hai cạnh tương ứng)
=> M là trung điểm của F, E
=> 3 điểm E,M,F thẳng hàng (Đpcm)
a) Xét tam giác ABM và tam giác DCM có:
BM=MC(M là trung điểm BC)
\(\widehat{BMA}=\widehat{CMD}\)(đối đỉnh)
MA=MD(gt)
=> ΔABM=ΔDCM(c.g.c)
b) Ta có: Tam giác ABC vuông tại A có M là trung điểm cạnh huyền BC
=> \(AM=BM=MC=\dfrac{1}{2}BC\)
=> Tam giác ABM cân tại M
\(\Rightarrow\widehat{ABM}=\widehat{BAM}\)
Mà ΔABM=ΔDCM(cmt)
\(\Rightarrow\widehat{ABM}=\widehat{DCM}=\widehat{BAM}=\widehat{CDM}\)
=> Tam giác DMC cân tại M
=> BD=DC
a: Xét ΔAMB và ΔDMC có
MA=MD
\(\widehat{AMB}=\widehat{DMC}\)
MB=MC
Do đó: ΔAMB=ΔDMC
a: Xét ΔMAC và ΔMDB có
MA=MD
\(\widehat{AMC}=\widehat{DMB}\)(hai góc đối đỉnh)
MC=MB
Do đó: ΔMAC=ΔMDB
b: Xét ΔMEB và ΔMFC có
ME=MF
\(\widehat{BME}=\widehat{CMF}\)(hai góc đối đỉnh)
MB=MC
Do đó: ΔMEB=ΔMFC
=>\(\widehat{MEB}=\widehat{MFC}\)
=>\(\widehat{MFC}=90^0\)
=>CF\(\perp\)AD
c: Xét tứ giác BFCE có
M là trung điểm chung của BC và FE
=>BFCE là hình bình hành
=>BF//CE và BF=CE
Ta có: BF//CE
B\(\in\)FG
Do đó: BG//CE
Ta có: BF=CE
BF=BG
Do đó: BG=CE
Xét tứ giác BGEC có
BG//EC
BG=EC
Do đó: BGEC là hình bình hành
=>BE cắt GC tại trung điểm của mỗi đường
mà H là trung điểm của BE
nên H là trung điểm của GC
=>G,H,C thẳng hàng