Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a )
xét tam giác ADB và ADC
góc BAD =ADC (gt)
góc ABD= góc ACD(vì ABC cân tại a)
AB=AC (vì ABC cân)
=> chúng bằng nhau (gcg)
=>BĐ=ĐC (2 cạnh tương ứng)
b)
xét tam giác HBD và KDC
goc BHD =DKC=90
goc B=C
BD=DC(cmt)
=> chúng bằng nhau
=>DH=DK (2 cạnh tương ứng)
c)
câu này mik đag nghĩ sorry nhé
mik sẽ giải sau
a: ΔABC cân tại A
mà AH là đường trung tuyến
nên AH là phân giác của góc BAC
c: ΔABC cân tại A
mà AH là trung tuyến
nên AH là trung trực của BC
=>I nằm trên trung trực của BC
=>IB=IC
d: Xet ΔABN có góc ABN=góc ANB=góc MBC
nên ΔABN can tại A
=>AB=AN
e: Xét ΔABC co
BM,AM là phân giác
nên M là tâm đừog tròn nội tiếp
=>CM là phân giác của góc ACB
Xét ΔHCM vuông tại H và ΔKCM vuông tại K có
CM chung
góc HCM=góc KCM
=>ΔHCM=ΔKCM
=>MH=MK
GT | △ABC (BAC = 90o , AB < AC) AE ⊥ BC (E BC) EAD = DAK = EAC : 2 DK ⊥ AC (K AC) |
KL | a, △AED = △AKD b, KD // AB , △ADB cân c, AC < AE + CD |
Giải:
a, Xét △AED vuông tại E và △AKD vuông tại K
Có: EAD = KAD (gt)
AD là cạnh chung
=> △AED = △AKD (ch-gn)
b, Vì KD ⊥ AC (gt) mà AB ⊥ AC
=> KD // AB (từ vuông góc đến song song)
=> KDA = DAB (2 góc so le trong)
Mà KDA = EDA (△AKD = △AED)
=> DAB = EDA
=> DAB = BDA
=> △ABD cân tại B
c, Vì △AED = △AKD (cmt)
=> AE = AK (2 cạnh tương ứng)
Xét △DKC vuông tại K có: KC < DC (quan hệ cạnh)
Ta có: AC = AK + KC = AE + KC < AE + DC (đpcm)
Xét tgiac vuông AKD và tam giác vuông AED, có
Góc AKD= góc AED =99°
Góc KAD=góc EAD ( tia phân giác)
AD là cạnh chung
=> Tam giác AKD= tam giác AED ( cạnh huyền góc nhọn kề)
=> DK= DE ( 2 canh tương ứng)
=> Tam giác DKE cân tại D ( định nghĩa)