Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét ΔABH vuông tại H và ΔACH vuông tại H có
AB=AC(ΔABC cân tại A)
AH chung
Do đó: ΔABH=ΔACH(cạnh huyền-cạnh góc vuông)
⇔BH=CH(hai cạnh tương ứng)
b) Áp dụng định lí Pytago vào ΔABH vuông tại H, ta được:
\(BH^2+AH^2=AB^2\)
\(\Leftrightarrow BH^2=AB^2-AH^2=5^2-4^2=9\)
hay BH=3(cm)
Vậy: BH=3cm
c) Ta có: ΔABH=ΔACH(cmt)
nên \(\widehat{BAH}=\widehat{CAH}\)(hai góc tương ứng)
hay \(\widehat{DAH}=\widehat{EAH}\)
Xét ΔDAH vuông tại D và ΔEAH vuông tại E có
AH chung
\(\widehat{DAH}=\widehat{EAH}\)(cmt)
Do đó: ΔDAH=ΔEAH(cạnh huyền-góc nhọn)
Suy ra: AD=AE(hai cạnh tương ứng)
Xét ΔADE có AD=AE(cmt)
nên ΔADE cân tại A(Định nghĩa tam giác cân)
A)TRONG TAM GIÁC CÂN ĐƯỜNG CAO CŨNG LÀ DƯỜNG PHÂN GIÁC, PHÁP TUYẾN,TRUNG TUYẾN
=> AH LÀ PHÂN GIÁC CỦA \(\widehat{BAC}\)
XÉT\(\Delta ABC\)CÂN TẠI A
\(\Rightarrow\hept{\begin{cases}AB=AC\\\widehat{B}=\widehat{C}\end{cases}}\)
XÉT \(\Delta ABH\)VÀ\(\Delta ACH\)CÓ
\(\widehat{A_1}=\widehat{A_2}\left(GT\right)\)
\(AB=AC\left(GT\right)\)
\(\widehat{B}=\widehat{C}\left(GT\right)\)
\(\Rightarrow\Delta ABH=\Delta ACH\left(G-C-G\right)\)
B)
TRONG TAM GIÁC CÂN ĐƯỜNG CAO CŨNG LÀ DƯỜNG PHÂN GIÁC, PHÁP TUYẾN,TRUNG TUYẾN
=> AH LÀ PHÂN GIÁC CỦA \(\widehat{BAC}\)
C)VÌ\(\Delta ABH=\Delta ACH\left(CMT\right)\)
=>HB=HC (HAI CẠNH TƯƠNG ỨNG)
D)XÉT\(\Delta AEH\)VÀ\(\Delta AFH\)CÓ
\(\widehat{A_1}=\widehat{A_2}\left(GT\right)\)
D) XÉT TAM GIÁC LÀ ĐƯỢC
a, Xét ∆ ABH và ∆AHC có:
+AH chung
+ ∠AHB= ∠AHC(=90*)
+AB=AC(△ ABC cân)
=> △AHB=△AHC(ch-cgv)
=>BH=HC(2 cạnh tương ứng)
b) Xét △ HEB và △HFC có:
+ ∠BEH= ∠CFH(=90*)
+HB=HC(cmt)
+ ∠B= ∠C(△ABC cân)
=> △HEB=△HFC(ch-cgnhon)
a) Xét tam giác BAH và tam giác CAH, có:
AH: cạnh chung
AB = AC ( tam giác ABC cân tại A )
góc AHB = góc AHC ( = 90 độ )
-> tam giác BAH = tam giác CAH ( ch-cgv )
-> HB = HC ( 2 cạnh tương ứng )
b) Xét tam giác FBH và tam giác ECH, có:
HB = HC ( cmt )
góc D = góc E ( = 90 độ )
góc B = góc C ( tam giác ABC cân tại A )
-> tam giác FBH = tam giác ECH ( ch-gn )
-> HF = HE ( 2 cạnh tương ứng )
-> tam giác HEF là tam giác cân tại H
k cho mình nha mỏi tay quá !!! thanks
a) Chứng minh HB=HC: Xét ΔAHB và ΔAHC có: ∠AHB=∠AHC=90(độ) AH cạnh chung AB=AC(gt) ⇒ ΔAHB = ΔAHC (ch-cgv) ⇒ HB=HC (2 cạnh tương ứng)
b) Ta có: HB=HC=BC/2=6/2=3(cm) Ta có: ΔAHB vuông tại H. ⇒ AH(mũ 2)+BH(mũ 2)=AB(mũ 2) ⇒ AH(mũ 2)=AB(mũ 2)-BH(mũ 2) =4(mũ 2)-3(mũ 2)=16-9=7 ⇒ AH=√7(cm)
c) Ta có: ΔAHB = ΔAHC ⇒ ∠BAH=∠CAH Xét ΔAHD và ΔAHE có: ∠D=∠E=90(độ) AH cạnh chung ∠BAH=∠CAH (gt) ⇒ ΔAHD = ΔAHE (ch-gn) ⇒ DH=EH ⇒ ΔHDE cân tại H.
a: Xét ΔAHB vuông tại H và ΔAHC vuông tại H có
AB=AC
AH chung
=>ΔAHB=ΔAHC
=>HB=HC
b: BH=CH=12/2=6cm
=>AC=căn AH^2+HC^2=10cm
c: Xét ΔADH vuông tại D và ΔAEH vuông tại E có
AH chung
góc DAH=góc EAH
=>ΔADH=ΔAEH
=>HD=HE
=>ΔHDE cân tại H