Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
hình mình vẽ tượng trưng thôi nha
đề của bạn 1 số chỗ hơi nhầm đó nha.
a)
dựa theo công thức tính diện tích tam giác, ta có:
S\(\Delta\)ABC = \(\dfrac{1}{2}.12.16=96\left(cm^2\right)\)
ta có:
AN = NC ; AM = MB
=> MN là đường trung bình của tam giác ABC
do đó MN//= \(\dfrac{1}{2}\)BC
=> MN = 6 cm
b) ta có:
AM = MB ; HM = ME
=> AHBE là hình bình hành
Mà ta lại thấy góc AHB vuông
=> AHBE là hình chữ nhật
c) ta có:
AH= HF ; CH = HB
=> ABFC là hình bình hành
Mà ta thấy AF \(\perp\) CB
suy ra ABFC là hình thoi.
d) mk k hỉu cái đề cho lắm nên thôi nha.
chúc bạn học tốt
tui chỉ làm phần d thôi nha, mấy câu trên cậu tự chứng minh nhé
Hình tự vẽ
Lấy M là trung điểm của CK
mà có I là tđ của HK
suy ra MI là đường trung bình tam giác HKC và MI song song với CH
mà CH lại vuông góc với HF ( tự c/m) nên MI vuông góc với HF
Xét tam giác HFM có I là trực tâm ( tự ghi rõ ) suy ra FI vuông góc với HM mà có
M là tđ CK, H là tđ BC ( tự c/m) suy ra đường trung bình nên HM song song với BK suy ra đpcm
tui chỉ ghi qua thui, cậu tự trình bày rõ ràng nhé
mấy cái tự c/m ko dài đâu, đều hiện lên trên hình cậu vẽ rùi, đều có sẵn chỉ cần vài dòng thui, đừng lười, THI TỐT NHẾ
MAI TUI THI TOÁN VỚI ANH ĐÓ, THANKS VÌ ĐỀ BÀI RẤT HAY NHA.
a: \(S_{ABC}=\dfrac{12\cdot10}{2}=60\left(cm^2\right)\)
b: Xét tứ giác AHBE có
M là trung điểm chung của AB và HE
góc AHB=90 độ
Do đó: AHBE là hình chữ nhật
c: Xét tứ giác ABFC có
H là trung điểm chung của AF và BC
AB=AC
Do đo: ABFC là hình thoi
4) Gọi D là trung điểm của CK.
ΔABC cân ở A có AH là đường cao, đồng thời là đường trung tuyến
⇒ CH ⊥ FH; H là trung điểm của BC
⇒ DH là đường trung bình của ΔBCK ⇒ DH // BK.
I là trung điểm của HK ⇒ DI là đường trung bình của ΔCHK
⇒ DI // CH ⇒ DI ⊥ FH.
K là hình chiếu của H lên CF ⇒ HI ⊥ DF
⇒ I là trực tâm của ΔDFH ⇒ FI ⊥ DH ⇒ FI ⊥ BK.
a) diện tích của tam giác ABC là SABC=1/2.AH.BC=1/2.16.12=96 tam giác ABC có M là trung điểm AB N là trung điểm AC nên MN là đường trung bình của tam giác ABC => MN=1/2BC=1/2.12=6 vậy MN=6
a: Xét tứ giác AHBE có
M là trung điểm chung của AB và HE
góc AHB=90 độ
Do đó: AHBE là hình chữ nhật
b: Xét tứ giác ABFC có
H là trung điểm chung của AF và BC
AB=AC
Do đó:ABFC là hình thoi
a: \(S_{ABC}=\dfrac{AH\cdot BC}{2}=12\cdot8=96\left(cm^2\right)\)
Xét ΔBAC có
M là trung điểm của AB
N là trung điểm của AC
Do đó: MN là đường trung bình
=>MN=BC/2=6(cm)
b: Xét tứ giác AHBE có
M là trung điểm của AB
M là trung điểm của HE
Do đó:AHBE là hình bình hành
mà \(\widehat{AHB}=90^0\)
nên AHBE là hình chữ nhật
c: Xét tứ giác ABFC có
H là trung điểm của AF
H là trung điểm của BC
Do đó: ABFC là hình bình hành
mà AB=AC
nên ABFC là hình thoi