Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔBAC có
E là trung điểm của AB
F là trung điểm của AC
Do đó: EF là đường trung bình của ΔBAC
Suy ra: EF//BC và \(FE=\dfrac{BC}{2}=\dfrac{8}{2}=4\left(cm\right)\)
a: Xét hình thang BDEC có
M là trung điểm của BD
N là trung điểm của EC
Do đó: MN là đường trung bình của hình thang BDEC
Suy ra: \(MN=\dfrac{DE+BC}{2}=\dfrac{8+4}{2}=6\left(cm\right)\)
a: Xét ΔABC có
E là trung điểm của AB
F là trung điểm của AC
Do đó: EF là đường trung bình
=>EF//BC
a. Vì M,N là trung điểm AB,AC nen MN là đtb tg ABC
Do đó \(MN=\dfrac{1}{2}BC=3\left(cm\right)\)
b. Vì MN là đtb nên MN//BC hay BMNC là hình thang
Mà \(\widehat{B}=\widehat{C}\left(\Delta ABC\text{ cân tại A}\right)\) nên BMNC là ht cân
c. Vì AH là trung tuyến của tam giác ABC cân nên cũng là đg cao
Do đó \(AH\bot BC\)
Mà Q,M là trung điểm BH và AB nên QM là đtb
Do đó \(QM//AH;QM=\dfrac{1}{2}AH\) hay \(QM//HP\)
Mà \(MN//BC\) nên \(MP//QH\)
Do đó QMPH là hbh
Mà \(AH\bot BC\) nên \(\widehat{PHQ}=90^0\)
Vậy QMPH là hcn
a: Xét ΔABC có
\(\dfrac{AD}{AB}=\dfrac{AE}{AC}\)
Do đó: DE//BC
Xét tứ giác BDEC có DE//BC
nên BDEC là hình thang
mà \(\widehat{B}=\widehat{C}\)
nên BDEC là hình thang cân
a) Vì AE = FA ( gt)
=> ∆AEF cân tại A
=> AEF = \(\frac{180°\:-\:BAC}{2}\)
Vì ∆ABC cân tại A
=> ABC = \(\frac{180°\:-\:BAC}{2}\)
=> ABC = AEF
Mà 2 góc này ở vị trí đồng vị
=> FE//BC
=> FEBC là hình thang
Mà ∆ABC cân tại A
=> ABC = ACB
=> FEBC là hình thang cân (dpcm)
b) Vì ∆ABC cân tại A
=> AB = AC
Mà AE = FA
=> EB = FC
Mà FEBC là hình thang cân
=> EC = FB ( tính chất)
Xét ∆ECB và ∆FBC ta có :
BC chung
EC = FB
ABC = ACB
=> ∆ECB = ∆FBC (c.g.c)
=> BEC = CFB ( tương ứng)
Xét ∆EIB và ∆FIC ta có :
EB = FC (cmt)
BEC = CFB (cmt)
EIB = FIC ( đối đỉnh)
=> ∆EIC = ∆FIC (g.c.g)
=> IB = IC ( tương ứng)
=> ∆IBC cân tại I
=> IBC = ICB
Vì M là trung điểm IB
N là trung điểm IC
=> MN là đường trung bình ∆IBC
=> MN //BC
=> MNCB là hình thang
Mà IBC = ICB (cmt)
=> MNCB là hình thang cân