Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Xét tam giác ADB và tam giác ADC có: AB=AC( giả thiết ) ; BD=DC(giả thiết); cạnh AD chung \(\rightarrow\) Tam giác ADB= tam giác ADC b,Tam giác ADB=tam giác ADC(theo câu a) nên góc DAB=góc DAC(2 góc tương ứng) \(\rightarrow\) AD là tia phân giác của góc BAC c, Vì tam giác ADB=ADC(câu a) nên góc ADB bằng góc ADC( 2 góc tương ứng) (1) Ta có góc ADB+góc ADC=180 độ (kề bù) (2) Từ (1) và (2) \(\rightarrow\) góc ADB=90 độ \(\Rightarrow\) AD vuông góc voi BC
A B C D
a) Xét △ADB và △ADC có:
AD : Cạnh chung
AB=AC ( GT)
BD=CD (GT)
Do đó △ADB = △ADC (c-c-c)
b) + c) △ABC cân tại A ( vì AB=AC) có : AD là đường trung trung tuyến
=> AD là đường phân giác của △ABC
Và AD là đường cao của △ABC hay AD ⊥ BC
Chúc bạn học giỏi !
Cho tam giác ABC có AB = AC, gọi D là trung điểm của BC. Chứng minh: a) Tam giác ADB = ADC; b) AD là tia phân giác của góc BAC; c) AD vuông góc BC - Toán học Lớp 7 - Bài tập Toán học Lớp 7 - Giải bài tập Toán học Lớp 7 | Lazi.vn - Cộng đồng Tri thức & Giáo dục : Bạn vào đó nhé !
A B C D
a) AB = AC => tam giác ABC cân tại A
=> B = C
Xét tam giác ADB và tam giác ADC có :
AB = AC ( gt )
B = C ( cmt )
BD = CD ( gt )
=> tam giác ADB = tam giác ADC ( đpcm )
b)+c) Ta có tam giác ABC cân tại A
mà AD là trung tuyến
=> AD đồng thời là phân giác và đường cao
=> đpcm
A B C D 1 2
a) Xét \(\Delta ADB\)và \(\Delta ADC\)có:
\(AB=AC\left(gt\right)\)
\(BD=DC\)( D là trung điểm của BC )
AD là cạnh chung
\(\Rightarrow\Delta ADB=\Delta ADC\left(c.c.c\right)\)
b) Vì \(\Delta ADB=\Delta ADC\left(cmt\right)\)
\(\Rightarrow\widehat{BAD}=\widehat{CAD}\)( 2 góc tương ứng )
=> AD là tia phân giác \(\widehat{BAC}\)
c) Vì \(\Delta ADB=\Delta ADC\left(cmt\right)\)
\(\Rightarrow\widehat{D_1}=\widehat{D_2}\)( 2 góc tương ứng )
Vì \(\widehat{D_1}+\widehat{D_2}=180^0\)( 2 góc kề bù )
\(\Rightarrow\widehat{D_1}=\widehat{D_2}=\frac{180^0}{2}=90^0\)
\(\Rightarrow AD\perp BC\)
A B C D
a , Xét Δ\(ADB\) và Δ\(ADC\) có:
\(AD\) là cạnh chung
\(A1=A2\) ( GT )
\(AB=AC\) ( GT )
⇒Δ\(ADB\)=Δ\(ADC\) ( c.g.c )
b , Vì : Δ\(ADB\)=Δ\(ADC\) ( chứng mính ý a )
⇒ \(B=C\) ( 2 góc tương ứng )
c , Vì : Δ\(ABC\) cân tại \(A\) mà \(AD\) là phân giác góc \(BAC\)
⇒ \(AD\) là đường cao ⇒ \(AD\perp BC\)