K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 11 2021

Góc A = 100 độ

=> B=C= 40 độ

Trên CA lây E sao choCB=CE

Góc C= 40 độ và MCB = 20 độ

=> MCB=MCE=20độ

=>ΔCBM=ΔCEMΔCBM=ΔCEM

=> Góc MCE = góc MBC=10 độ

BCE= 40 độ và tam giác BCE cân tại C

=>CEB=( 180-40)/2=70 độ

=> MEB=60 độ(1)

=> Tam giác CBM= CEM

=> MB=ME(2)

Từ (1) và (2) suy ra BME là tam giác đều MB=BE(3)

Góc ABC =40 độ MBC=10 độ

=> ABM=30 độ

Góc ABE=CBE -ABC=70-40 =30độ

=> Góc ABM=ABE(4)

Từ (3) và (4 ) suy ra tam giác ABM =tam giác ABE ( vì AB chung)

=> Góc AMB=AEB=70 độ

26 tháng 2 2020

Câu hỏi của Nguyễn Anh Thư - Toán lớp 7 - Học toán với OnlineMath

10 tháng 1 2017

làm kiểu j vậy

18 tháng 3 2017

A B C M D

Trên tia CA lấy điểm D sao cho CD=CB 

góc ABC+góc BAC+góc ACB=180o (tổng 3 góc trong tam giác) => góc ABC+100o+góc ACB=180o 

=>góc ABC+góc ACB=80o  mà góc ABC=góc ACB (tam giác ABC cân tại A) =>góc ABC=góc ACB=40o 

Xét tam giác BCM và tam giác DCM có: CB=CD (dựng hình);góc ABC=góc ACB=40o ; CM chung

=>tam giác BCM = tam giác DCM (c.g.c) => MD=MB (2 cạnh tương ứng) => tam giác MBD cân tại M (*)

Mặt khác CD=CB => tam giác BDC cân tại C => góc CBD=góc CDB 

góc CBD+góc BCD+góc BDC=180o => góc CBD+40o+góc BDC=180=>góc CBD+góc BDC=140o

mà góc CBD=góc BDC (tam giác BDC cân tại C) => góc CBD=góc BDC=70o

góc CBD=góc CBM+góc DBM=góc 10o+góc DBM=70o => góc DBM=60 kết hợp với (*) => tam giác MDB đều

rồi bạn chứng minh tiếp tam giác ABD=tam giác ABM => góc ADB=góc AMB=70o

20 tháng 1 2019

Cách làm của mình giống với Trà My nhé <3
Chúc bạn học tốt !!! <3

Trên một nửa mặt phẳng bờ BC chứa điểm A vẽ \(\Delta BCD\)đều

Từ đó xét các tam giác bằng nhau 

Bài này trình bày dài lắm nên không trình bày hết ra đâu nha chỉ gợi ý bước đầu thôi ! Thông cảm <3

27 tháng 12 2015

thông cảm mới học lớp 6

27 tháng 12 2015

mk mới học lớp 6 ah !

25 tháng 11 2019

a) Xét \(\Delta\)ABC cân tại A có: ^A = 100\(^o\)

=> ^B = ^C = ( 180\(^o\)- ^A) : 2 = ( 180\(^o\)- 100\(^o\)) : 2 = 40\(^o\)

b) Gọi O là giao điểm của AE và BC 

Có: ^BAC = 100\(^o\); ^BAO = ^DAE = 60\(^o\)

=> ^OAC = ^BAC - BAO = 100\(^o\)- 60 \(^o\)= 40 \(^o\)

=> \(\Delta\)AOC cân tại O ( 1)

Ta lại có: AE = AD ( \(\Delta\)ADE đều ); DA = BC ( giả thiết )

=> AE = BC 

Và AO = OC  ( theo (1))

=> AE - AO = BC - OC

=> OB = OE (2)

Xét \(\Delta\)AOB và \(\Delta\)COE có:

OA = OC ( theo (1)  )

OB = OE ( theo (2) )

^AOB = ^COE ( đối đỉnh )

=>  \(\Delta\)AOB =  \(\Delta\)COE ( c.g.c)

=> AB = CE 

Lại có: AB = AC (  \(\Delta\)ABC cân tại A )

=> AC = CE ( 3)

Xét  \(\Delta\)ADC và \(\Delta\)EDC có:

AB = DE (  \(\Delta\)ADE đều )

CA = CE ( theo 3)

DC chung 

=>  \(\Delta\)ADC và \(\Delta\)EDC ( c.c.c)

=> ^ADC = ^EDC 

Mà ^ADC + ^EDC = ^ADE = 60\(^o\)

=> ^ADC = 30\(^o\)

=> ^ADO = 30 \(^o\)

Xét \(\Delta\) ADO có: ^ADO + ^DAO = 30\(^o\)+ 60\(^o\)=90\(^o\)

=> ^AOD = 90\(^o\)

=> DC vuông AE