K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 4 2016

Bạn tự vẽ hình nha!

a.

Xét tam giác ABM và tam giác ACM có:

AB = AC (tam giác ABC cân tại A)

B = C (tam giác ABC cân tại A)

BM = CM (AM là trung tuyến của tam giác ABC)

=> Tam giác ABM = Tam giác ACM (c.g.c)

b.

Tam giác ABM = Tam giác ACM (theo câu a)

=> M1 = M2 (2 góc tương ứng)

mà M1 + M2 = 180 (2 góc kề bù)

=> M1 = M2 = 180/2 = 90

=> AM _I_ BC

( Cái này bạn chứng minh theo cách: AM là trung tuyến của tam giác ABC cân tại A nên AM là đường trung trực của tam giác ABC cũng được. Tại mình sợ bạn chưa học tới)

BM = CM = BC/2 (AM là trung tuyến của tam giác ABC)

=> BM = CM = 10/2 = 5

Áp dụng định lí Pytago vào tam giác ABM vuông tại A ta có:

AB^2 = BM^2 + AM^2

13^2 = 5^2 + AM^2

AM^2 = 169 - 25

AM = 12

Ta có: AG = 2/3 AM (tính chất trọng tâm)

=> AG = 2/3 . 12

AG = 8

a: Xet ΔAMB và ΔAMC có

AM chung

MB=MC

AB=AC

Do đó: ΔAMB=ΔAMC

b: Ta có: ΔABC cân tại A

mà AM là trung tuyến

nên AM là đường cao

BC=12cm nên BM=6cm

=>AM=8(cm)

c: I cách đều ba cạnh nên I là giao điểm của ba đường phân giác

=>AI là phân giác của góc BAC

mà AM là phân giác của góc BC

nên A,I,M thẳng hàng

17 tháng 4 2016

xét tam giác ABD và tam giác ACD có:

AB=AC

AD(chung)

BAD=CAD(gt)

suy ra tam giác ABD=ACD(c.g.c)

suy ra _ADB=ADC mà ADC+ADB=180 suy ra ADC=ADB=180/2=90

         |

          -DB=DC=1/2BC=5cm

vì AD là 1 đường trung tuyến của tam giác ABC, G là trọng tâm của tam giác ABC suy ra GD=1/3AD

ta có:\(AD^2=AB^2-BD^2=13^2-5^2=169-25=144\) 

\(AD=\sqrt{144}=12\left(cm\right)\)

GD=1/3AD=1/3x12=4(cm)

17 tháng 3 2022

tham khảo

+ Vì MAM là đường trung tuyến của ΔABC(gt)ΔABC(gt)

=> MM là trung điểm của BC.BC.

=> BM=CM=12BCBM=CM=12BC (tính chất trung điểm).

=> BM=CM=12.16=162=8(cm).BM=CM=12.16=162=8(cm).

+ Xét ΔABCΔABC có:

AB=AC=17cm(gt)AB=AC=17cm(gt)

=> ΔABCΔABC cân tại A.A.

Có AMAM là đường trung tuyến (gt).

=> AMAM đồng thời là đường cao của ΔABC.ΔABC.

=> AM⊥BC.AM⊥BC.

+ Xét ΔABMΔABM vuông tại M(cmt)M(cmt) có:

AM2+BM2=AB2AM2+BM2=AB2 (định lí Py - ta - go).

=> AM2+82=172AM2+82=172

=> AM2=172−82AM2=172−82

=> AM2=289−64AM2=289−64

=> AM2=225AM2=225

=> AM=15(cm)AM=15(cm) (vì AM>0AM>0).

+ Vì G là trọng tâm của ΔABC(gt).ΔABC(gt).

=> AG=23AMAG=23AM (tính chất trọng tâm của tam giác).

=> AG=23.15AG=23.15

=> AG=303AG=303

=> AG=10(cm).AG=10(cm).

Vậy AM=15(cm);AG=10(cm).