K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
3 tháng 2 2021

Lời giải:

Do $CK$ là tia phân giác ngoài $\widehat{ACB}$ nên theo tính chất tia phân giác ngoài ta có:

$\frac{KB}{KA}=\frac{CB}{CA}=\frac{CB}{AB}=\frac{10}{15}=\frac{2}{3}$

$\Leftrightarrow \frac{KB}{KA-KB}=\frac{2}{3-2}=2$

$\Leftrightarrow \frac{KB}{AB}=2\Rightarrow KB=2AB=2.15=30$

$AK=BK+AB=30+15=45$

Vậy........

AH
Akai Haruma
Giáo viên
3 tháng 2 2021

Hình vẽ:

undefined

19 tháng 10 2021

a) Xét tam giác ABC có:

M là trung điểm AB

N là trung điểm AC

=> MN là đường tb

=> BC=2MN=2.7,5=15(cm)

b) Xét tam giác ABC có:

M là trung điểm AB

P là trung điểm BC

=> MP là đường tb

=> MP//AC và \(MP=\dfrac{1}{2}AC\)

Mà \(N\in AC,AN=\dfrac{1}{2}AC\)(N là trung điểm AC)

=> MP//AN và MP=AN

=> AMPN là hbh

c) Ta có: MN//BC(MN là đường tb)

Mà \(H,P\in BC\)

=> MN//HP

=> MHPN là hthang

Xét tam giác AHC vuông tại H có:

HN là trung tuyến ứng với cạnh huyền

\(\Rightarrow HN=\dfrac{1}{2}AC\)

Mà \(MP=\dfrac{1}{2}AC\left(cmt\right)\)

=> HN=MP

=> MHPN là hthang cân

 

Đề bài yêu cầu gì?

Bài 2: 

a: H là trung điểm của BC

nên HB=HC=2,5(cm)

\(\Leftrightarrow AH=\dfrac{5\sqrt{15}}{2}\left(cm\right)\)

\(S=\dfrac{\dfrac{5\sqrt{15}}{2}\cdot5}{2}=\dfrac{25\sqrt{15}}{4}\left(cm^2\right)\)

b: Xét ΔABC có 

M là trung điểm của AB

N là trung điểm của AC

Do đó: MN là đường trung bình của ΔABC

Suy ra: MN//BC

Xét tứ giác BMNC có MN//BC

nên BMNC là hình thang

mà \(\widehat{B}=\widehat{C}\)

nên BMNC là hình thang cân

1 tháng 10 2021

:)

6 tháng 11 2021

a, Vì E,F là trung điểm AC,BC nên EF là đtb tg ABC

Do đó EF//AB hay EF//AD và \(EF=\dfrac{1}{2}AB=AD\)(D là trung điểm AB)

Do đó AEFD là hbh

Vì AF là trung tuyến tam giác ABC cân tại A nên AF cũng là đường cao

Do đó AF⊥BC(1)

Lại có D,E là trung đỉm AB,AC nên DE là đtb tg ABC

Do đó DE//BC(2)

(1)(2) ta được DE⊥AF

Vậy AEFD là hthoi

b, Vì AEFD là hthoi mà I là trung điểm AF nên I là trung điểm DE

Vậy D,I,E thẳng hàng