K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 6 2017

a/ Gọi D là giao điểm của đường trung trực cạnh AC với AC

Xét hai tg vuông ADM và tg vuông CDM có

AD = CD (MD là trung trực)

MD chung

^ADM = ^CDM = 90

=> tg ADM = tg CDM (c.g.c)

=> AM = CM => tg AMC cân tại M => ^ACB = ^MAC => ^AMC = 180 - ^ACB - ^MAC = 180 - 2.^ACB (1)

Xét tg ABC có ^BAC = 180 - ^ACB - ^ABC = 180 -2.^ACB (2)

Từ (1) và (2) => ^AMC = ^BAC

b/ Ta có 

^ABM = 180 - ^ABC (1)

^CAN = 180 - MAC (2)

^MAC = ^ACB = ^ABC (3)

Từ (1) (2) (3) => ABM = ^CAN

Xét hai tg ABM và tg CAN có

AB = AC

BM = AN

^ABM = ^CAN

=> tg ABM = tg CAN => AM = CN mà AM = CM => CM = CN

c/ Để CM vuông góc với CN => tg NCN là tg vuông => ^AMC + ^ANC =90

mà ^AMC = ^BAC (c/m câu a); ^AMC = ^ANC (tg AMB = tg ANC đã c/m) => ^BAC = ^AMC = ^ANC

=> ^AMC + ^ANC = ^BAC + ^ANC = 2.^BAC = 90 => ^BAC = 45

=> để CM vuông góc với CN thì ^BAC của tg cân ABC = 45

=> 

16 tháng 8 2019

ko có hình à

9 tháng 7 2019

Câu hỏi của nguyen phuong mai - Toán lớp 7 - Học toán với OnlineMath'

Bạn tham khảo link trên nhé!

30 tháng 6 2018

a)Vì trung trực của AC cắt BC tại M=>MA+MC =>Tam giác MAC cân tại M mà có góc đáy bằng góc C mà góc C là góc đáy của tam giác cân tại A=>AMC=BAC(Hai góc ở đỉnh của hai tam giác cân)
b)Xét tam giác CAN và tam giác ABM có:
AB=AC(gt)
MB=AN(gt)
Mà NAC=C+A(vì góc MAC=góc A)
ABM=C+A
=>NAC= ABM
=>Tam giác CAN=tam giác ABM(c.g.c)
=>MA=NC mà MA=MC(c/m trên)=>CM=NC
c)Thêm điều kiện góc A=450

A) Vì trung trực của AC cắt BC tại M ==> Tam giác MAC cân tại M mà nó lại có góc đáy bằng góc C mà góc C lại là góc đáy của tam giác cân tại A ==> AMC = BAC(Hai góc ở đỉnh của hai tam giác cân)

B) Xét tam giác CAN và tam giác ABM có:

AB = AC (gt)

MB = AN (gt)

Mà NAC = C + A (vì góc MAC bằng với góc A)

ABM = C + A

- NAC = ABM

- Tam giác Can = Tam giác ABM (c.g.c)

MA = NC mà MA = CM (c/m trên) ==> CM = NC

C)Thêm điều kiện góc phải là 450

*Hình tự vẽ*

a, Vì M ϵ trung trực của AC (GT)

=> MA=MC

=> Δ MAC cân tại M

=> góc AMC = 180 2 lần góc C

Lại có Δ ABC cân tại A

=> góc BAC = 180 - 2 lần góc C

=> Góc BAC = góc AMC (= 180 - 2 lần góc C)

b, Ta có góc NAC + góc MAC = 180 (2 góc kề bù) (1)

Có: góc MBA + ABC = 180 (2 góc kề bù) (2)

mà _góc ABC = góc ACB (Δ ABC cân tại A)

_ góc ACB = góc MAC (Δ MAC cân tại M)

=> góc ABC = góc MAC (3) Từ (1) (2) (3)

=> góc NAC = góc MBA

Xét Δ MBA và Δ NAC có:

MB = NA (GT)

góc MBA = góc NAC (CMT)

BA = CA (ΔABC cân tại A)

=> ΔMBA = Δ NCA (C.G.C)

=> MA = NC (2 cạnh tương ứng)

mà MA = NC (ΔMAC cân tại M)

=> MC = NC

c) mk ko bt lm nha ~~ xl