Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hình bạn tự vẽ nhé !! Mình đang bận
a, xét tam giác ABD và tam giác EBD
có góc BAD = góc BED(=90 độ)
BD là cạnh chung
góc ABD = góc EBD (BD là phân giác)
=> 2 tam giác bằng nhau (ch-gn)
b, Vì 2 tam giác trên bằng nhau
=> AD=DE (2 cạnh tương ứng)
xét tam giác ADK và tam giác EDC
có góc KAD = góc CED (=90 độ)
AD=DE(cmt)
góc ADK = góc EDC (đối đỉnh)
=> 2 tam giác ADK và EDC bằng nhau
=> DK=DC(2 cạnh tương ứng)
c, +, xét tam giác ABC vuông tại A (gt)
=> \(BC^2=AB^2+AC^2\left(1\right)\)
Mà AB =9cm(2),AC=12 cm (gt) (3)
Từ (1)(2)=> \(BC^2=9^2+12^2=225\)
=>\(BC=15\left(cm\right)\left(4\right)\)
+, Vì 2 tam giác ADK và EDC
=> AK =EC (2 cạnh tương ứng)
Mà AB = BE (vì 2 tam giác ABD và EBD)
Từ đó => AK+AB=EC+BE
hay BK =BC (5)
Mặt khác BK=AB+AK(6)
Từ (2)(4)(5)(6)=>15=9+AK
=>AK=15-9=6(cm)
d,Gọi BD giao KC tai điểm O
Xét 2 tam giác BKO và BCO
có BK = BC (cmt)
góc KBO = góc CBO(Vì BD là tia phân giác)
BO là cạnh chung
=>2 tam giác BKO và BCO bằng nhau
=> góc BOK = góc BOC(7)
Ta lại có 2 góc trên có tổng bằng 180 độ(kb) (8)
Từ (7)(8)=> Góc BOK=90 độ
hay BO vuông góc với KC (9)
Ta có AB = BE (2 tam giác BAD và BED bằng nhau)
AD = DE (______________________________)
Từ 2 điều trên => BD là đường trung trực của AE
Hay BD vuông góc với AE(tính chất đường trung trực)
mà O \(\in\)BD => BO vuông góc với AE(10)
Từ (9)(10)=> AE // KC (Từ vuông góc đến //)
Chúc bạn hk tốt!!
a) xét ∆ABD và ∆EBD có :
Góc ABD = góc EBD ( BD là tia phân giác )
Góc BAD = góc BED ( =90° )
Chung BD
=) ∆ABD = ∆EBD ( ch-gn )
b) =) AD = DE
Xét ∆ADK và ∆EDC có :
AD = DE
Góc ADK = góc EDC
Góc KAD = góc CED
=) ∆ ADK = ∆ EDC ( g-c-g )
=) DK=DC
hình thì cậu tự vẽ còn bài làm thì ở dưới đây:
a) xét tam giác ADB và ADC có: AD chung
DB=DC(vì tam giác DBC đều)
AB=AC ( tam giác ABC cân tại A)
=> tam giác ADB=tam giác ADC (c.c.c)
=>\(\widehat{ADB}\)= \(\widehat{ADC}\)(2 góc tương ứng)
mà AD nằm giữa AB và AC =>AD là tia p/g của góc BAC
\(\widehat{BAD}=\widehat{CAD}\) mới đk chứ mà mk cx cảm ơn nhé câu b thì lm sao bạn ơi
Bài 3 :
Gọi gia điểm của các đường trung trực với AB,Ac lần lượt là H ,K
Ta có :AH + HB = AB
AK + KC = AC
mà AB = AC ( tam giác ABC cân tại A)
=> AH + HB = AK + KC
mà CH và Bk lần lượt là trung trực của AB ,AC
=> AH = HB = AK = KC
Xét tam giác AHI và tam giác AKI có
AHI = AKI = 90
AH = AK ( cmt )
AI : cạnh chung
=> tam giác AHI = tam giác AKI ( canh huyền - cạnh gosc vuông )
=> ^HAI = ^KAI ( 2 góc tương ứng )
=> AI là tia phân giác của ^A
Vậy AI là tia phân giác của ^A
Bài 1
a, Vì tam giác ABC cân tại A => AB = AC và ^ABC = ^ACB
Ta có : ^ABC + ^ABD = 180 (kề bù )
^ACB + ^ ACE = 180 ( kề bù )
mà ^ABC = ^ACB
=> ^ABD = ^ ACE
Xét tam giác ABD và tam giác ACE có :
AB =AC ( tam giác ABc cân tại a )
^ABD = ^ACE ( cmt )
BD = CE ( gt)
=> tm giác ABD = tam giác ACE ( c.g.c)
=> ^ADB = ^AEC ( 2 góc tương ứng )
hay ^HDB = ^KEC
Xét tam giác HBD và tam gisc KEC có :
^DHB = ^EKC = 90
BD = CE (gt)
HDB = KEc ( cmt )
=> tam giác HBD = tam giác KCE ( cạnh huyền - góc nhọn )
=> HB = Ck ( 2 canh tương ứng )
Vậy HB = Ck
b,Xét tam giác ABH và tam giác ACk có
AHB = AKC = 90
HB = CK ( cmt )
AB = AC
=> tam giác ABH = tam giác ACK ( anh huyền - canh góc vuồng )
Vậy tam giác ABH =tam giác ACK
Hình và GT; KL tự vẽ
CM : Ta có: t/giác ABC cân tại A => góc B = góc C (1)
Mà góc ABI = góc IBC = góc B/2 (gt) (2)
góc ACK = góc KCB = góc C/2 (gt) (3)
Từ (1),(2),(3) suy ra góc ACK = góc KCB = góc ABI = góc IBC
Xét t/giác AIB và t/giác AKC
có góc A : chung
AB = AC (gt)
góc ABI = góc ACK (cmt)
=> t/giác ABI = t/giác ACK (g.c.g)
=> AI = AK (hai cạnh tương ứng)
b) Ta có: AI = AK (cmt)
=> t/giác AKI là t/giác cân tại A
=> góc AKI = gióc AIK = \(\frac{180^0-\widehat{A}}{2}\)(4)
Ta lại có: t/giác ABC cân tại A
=> góc B = góc C = \(\frac{180^0-\widehat{A}}{2}\)(5)
Từ (4) và (5) suy ra góc AKI = góc B
mà góc AKI và góc B ở vị trí đồng vị
=> IK // BC (ĐPCM)
c) tự làm (ko biết cứ hỏi)
thanks bn nhìu lắm nha!!!!!gặp thần cứu hộ rùi