K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔADB vuông tại D và ΔAEC vuông tại E có

AB=AC

góc BAD chung

DO đo:ΔADB=ΔAEC

b: Xét ΔABC có AE/AB=AD/AC

nên ED//BC

c: Xét ΔIEB vuông tại E và ΔIDC vuông tại D có

BE=CD
\(\widehat{IBE}=\widehat{ICD}\)

Do đó: ΔIEB=ΔIDC

Suy ra: IB=IC

hay I nằm tren đường trung trực của BC(1)

Ta có: ΔABC cân tại A

mà AM là đường trung tuyến

nên AM là trung trực của BC(2)

Từ (1) và (2) suy ra A,I,M thẳng hàng

a: Xét ΔADB vuông tại D và ΔAEC vuông tại E có

AB=AC

\(\widehat{BAD}\) chung

Do đó: ΔADB=ΔAEC

b: Ta có: ΔADB=ΔAEC

nên BD=CE

Xét ΔEBC vuông tạiE và ΔDCB vuông tại D có

BC chung

CE=BD

Do đó:ΔEBC=ΔDCB

Suy ra: \(\widehat{OCB}=\widehat{OBC}\)

hay ΔOBC cân tại O

c: Xét ΔABC có AE/AB=AD/AC

nên ED//BC

d: Ta có: ΔEBC vuông tại E

mà EM là đường trung tuyến

nên BC=2EM

1 tháng 3 2022

a: Xét ΔADB vuông tại D và ΔAEC vuông tại E có

AB=AC

ˆBADBAD^ chung

Do đó: ΔADB=ΔAEC

b: Ta có: ΔADB=ΔAEC

nên BD=CE

Xét ΔEBC vuông tạiE và ΔDCB vuông tại D có

BC chung

CE=BD

Do đó:ΔEBC=ΔDCB

Suy ra: ˆOCB=ˆOBCOCB^=OBC^

hay ΔOBC cân tại O

c: Xét ΔABC có AE/AB=AD/AC

nên ED//BC

d: Ta có: ΔEBC vuông tại E

mà EM là đường trung tuyến

nên BC=2EM

26 tháng 3 2019

a,xét tam giác ABD và tam giác ACE có:

              AB=AC(gt)

   vì \(\widehat{ABC}\)=\(\widehat{ACB}\)suy ra \(\widehat{ABD}\)=\(\widehat{ACE}\)

              BD=CE(gt)

\(\Rightarrow\)\(\Delta\)ABD=\(\Delta\)ACE(c.g.c)

b,xét 2 tam giác vuông ADH và AEK có:

                AD=AE(theo câu a)

                \(\widehat{DAH}\)\(\widehat{EAK}\)(theo câu a)

\(\Rightarrow\)\(\Delta\)ADH=\(\Delta\)AEK(CH-GN)

\(\Rightarrow\)DH=EK

c,xét tam giác AHO và tam giác AKO có:

              AH=AK(theo câu b)

              AO cạnh chung

\(\Rightarrow\)\(\Delta\)AHO=\(\Delta\)AKO( cạnh góc vuông-cạnh huyền)

\(\Rightarrow\)\(\widehat{HAO}\)=\(\widehat{KAO}\)

\(\Rightarrow\)AO là phận giác của góc BAC

d,câu này dễ nên bn có thể tự làm tiếp nhé

             

17 tháng 3 2019

A B C E D O

a.Xét\(\Delta ADB\)\(\Delta AEC\)có:

\(\widehat{BDA}=\widehat{CEA}=90^o\left(gt\right)\)

\(\widehat{A}\)chung

AB=AC(gt)

=> \(\Delta ADB=\Delta AEC\)(cạnh huyền góc nhọn)

b. Theo a ta có: \(\widehat{DBE}=\widehat{DCE}\)(2 góc tương ứng)

Mà \(\widehat{B}=\widehat{C}\)( tính chất tam giác cân)

=> \(\widehat{OBC}=\widehat{OCB}\)

=> Tam giác BOC cân tại O

câu b sai đề thì phải bạn ạ

còn câu c thì mình không biết M là giao điểm của BC với cạnh nào nên không làm được

17 tháng 3 2019

M là trung điểm BC bn ạ

Câu 1. Cho tam giác ABC vuông tại A (AB<AC). Tia phân giác góc A cắt BC tại D. Trên cạnh AC lấy điểm M sao cho AM=ABa) Chứng minh: DB=DMb) Gọi E là giao điểm AB và MD. Chứng minh \(\Delta BED=\Delta MCD\)c) Gọi H là trung điểm của EC. Chứng minh ba điểm A,D,H thẳng hàngCâu 2 . Cho \(\Delta ABC\)có AB<AC. Tia phân giác góc ABC cắt AC tại D. Trên cạnh BC lấy điểm E sao cho BA=BEa) Chứng minh: DA=DEb) Tia ED cắt BA tại F....
Đọc tiếp

Câu 1. Cho tam giác ABC vuông tại A (AB<AC). Tia phân giác góc A cắt BC tại D. Trên cạnh AC lấy điểm M sao cho AM=AB

a) Chứng minh: DB=DM

b) Gọi E là giao điểm AB và MD. Chứng minh \(\Delta BED=\Delta MCD\)

c) Gọi H là trung điểm của EC. Chứng minh ba điểm A,D,H thẳng hàng

Câu 2 . Cho \(\Delta ABC\)có AB<AC. Tia phân giác góc ABC cắt AC tại D. Trên cạnh BC lấy điểm E sao cho BA=BE

a) Chứng minh: DA=DE

b) Tia ED cắt BA tại F. Chứng minh \(\Delta DAF=\Delta DEC\)

c) Gọi H là trung diểm của FC. Chứng minh ba điểm B,D,H thẳng hàng

Câu 3. Cho \(\Delta ABC\)cân tại A. Kẻ AH vuông góc với BC (\(H\in BC\))

a) Chứng minh: HB=HC

b) Kẻ \(HD\perp AB\left(D\in AB\right)\)và \(HE\perp AC\left(E\in AC\right)\). Chứng minh \(\Delta HDE\)cân

Câu 4. Cho tam giác ABC vuông tại B, đường phân giác \(AD\left(D\in BC\right)\). Kẻ DE vuông góc với \(AC\left(E\in AC\right)\)

a) Chứng minh: \(\Delta ABD=\Delta AED;\)

b) BE là đường trung trực của đoạn thẳng AD

c) Gọi F là giao điểm của hai đường thẳng AB và ED  Chứng minh BF=EC

3
4 tháng 5 2019

Câu a

Xét tam giác ABD và AMD có

AB = AM từ gt

Góc BAD = MAD vì AD phân giác BAM

AD chung

=> 2 tam guacs bằng nhau

4 tháng 5 2019

Câu b

Ta có: Góc EMD bằng CMD vì góc ABD bằng AMD

Bd = bm vì 2 tam giác ở câu a bằng nhau

Góc BDE bằng MDC đối đỉnh

=> 2 tam giác bằng nhau

20 tháng 6 2019

a ) Tam giác cân ABC có BD , CE là đường cao => BD , CE cũng là đường trung tuyến ứng với cạnh AC , AB

mà AB = AC => AE = AB = AD = AC

Xét \(\Delta ADB\)và \(\Delta AEC\)có :

AB = AC ( do tam giác ABC cân )

\(\widehat{ADB}=\widehat{AEC}\) \(\left(=90^o\right)\)( do \(BD\perp AC\)\(CE\perp AB\))

AD = AE ( cm trên )

nên \(\Delta ADB=\Delta AEC\)( c.g.c )

b ) Do \(\Delta ABC\) cân => \(\widehat{ABC}=\widehat{ACB}\)

\(\widehat{ABC}=\widehat{ABD}+\widehat{DBC}\)

\(\widehat{ACB}=\widehat{ACE}+\widehat{ECB}\)

Mà \(\widehat{ABD}=\widehat{ACE}\)( do \(\Delta ADB=\Delta AEC\)phần a ) => \(\widehat{DBC}=\widehat{ECB}\)

=> \(\Delta BOC\)cân

Mấy phần còn lại tự làm , hình dễ tự vẽ

A)Vì tam giác ABC cân tại A 

=> ABC = ACB 

=> AB = AC 

Xét tam giác AEC (AEC = 90) và tam giác ADB(ADB=90) ta có :

AB = AC 

Góc A chung 

=> tam giác AEC = tam giác ADB ( ch-gn)

B) Tự xét tam giác ECB = tam giác DBC (cgv-gn)

=> EB = DC tương ứng

Xét tam giác EBO vuông tại E và tam giác DCO vuông tại D ta có :

EB = DC

EOB = DOC (đối đỉnh)

=> 2 tam giác trên bằng nhau

=> BO = OC tương ứng

=> tam giác BOC cân tại B

29 tháng 3 2019

--???????????--

29 tháng 3 2019

a, xét t.giác ADB và t.giác AEC có:

                AB=AC(gt)

               \(\widehat{A}\)chung

=> \(\Delta\)ADB=\(\Delta\)AEC(CH-GN)

b,vì \(\widehat{B}\)=\(\widehat{C}\)(tam giác ABC cân tại A) mà \(\widehat{ABD}\)=\(\widehat{ACE}\)(theo câu a)

=>\(\widehat{OBC}\)=\(\widehat{OCB}\)

=>t.giác BOC cân tại O

c,vì AE=AD(theo câu a) suy ra t.giác AED cân tại A => \(\widehat{AED}\) =\(\widehat{ADE}\)mà t.giác ABC cx cân tại=>\(\widehat{B}\)=\(\widehat{C}\)

=> \(\widehat{AED}\)=\(\widehat{B}\)mà 2 góc này ở vị trí đồng vị nên => ED//BC

d, ta có