K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 5 2016

phần a dễ quá em tự giải nhé.

phần b: góc AMB = góc AMC (1) ( vì tam giác ABM = tam giác ACM)

Ta lại có : góc AMB + góc AMC = 180 độ (2)    ( 2 góc kề bù )

từ (1) và (2) suy ra : góc AMB = góc AMC = 90 độ 

Phần c. Áp dụng định lí Pytago cho tam giác vuông ABM tính ra AM = 12 cm 

10 tháng 5 2019

a,XétΔABM và ΔACM có :

^AMB=^AMC(=90o)

AB=AC(GT)

AM :cạnh chung(gt)

Suy ra:ΔABM= ΔACM (ch-cgv)

=>MB=MC( 2 cạnh tương ứng)

b,Ta có MB=BC2 =242 = 12

Δ AMB vuông tại M có :

AM2+BM2=AB2 ( đl Pytago)

=>AM2=AB2−BM2

202−122

162

=>AM=16

26 tháng 4 2020

A B C M

a) Xét t/giác ABM và t.giác ACM

có: AB = AC (gt)

AM : chung

BM = MC (gt)

=> t/giác ABM = t/giác ACM (c.c.c)

=> \(\widehat{AMB}=\widehat{AMC}\) (2 góc t/ứng)

Mà \(\widehat{AMB}+\widehat{AMC}=180^0\)(kề bù)

=> \(\widehat{AMB}=\widehat{AMC}=90^0\)

=> AM vuông góc với BC

b) Ta có: BM = MC = 1/2BC = 1/2.32 = 16 (cm)

Áp dụng định lí Pi - ta - go vào t/giác ABM vuông tại M, ta có:

\(AB^2=AM^2+BM^2\)

=> AM2 = AB2 - BM2 = 342 - 162 = 900

=> AM = 30 (cm)

c) Chu vi t/giác AMB = 34 + 16 + 30 = 80 (cm)

Diện tích t/giác ABM là: 30 x 16 : 2 = 240 (cm2)

a: Xet ΔAMB và ΔAMC có

AM chung

MB=MC

AB=AC

Do đó: ΔAMB=ΔAMC

b: Ta có: ΔABC cân tại A

mà AM là trung tuyến

nên AM là đường cao

BC=12cm nên BM=6cm

=>AM=8(cm)

c: I cách đều ba cạnh nên I là giao điểm của ba đường phân giác

=>AI là phân giác của góc BAC

mà AM là phân giác của góc BC

nên A,I,M thẳng hàng

a: Xét ΔABM và ΔACM có

AB=AC

BM=CM

AM chung

=>ΔABM=ΔACM

b: ΔABM=ΔACM

=>góc AMB=góc AMC=1/2*180=90 độ

BM=CM=30/2=15cm

AM=căn 17^2-15^2=8cm

c: góc BAC=180-2*30=120 độ

=>góc IMK=60 độ

Xét ΔAIM vuông tại I và ΔAKM vuông tại K có

AM chung

góc IAM=góc KAM

=>ΔAIM=ΔAKM

=>MI=MK

mà góc IMK=60 độ

nên ΔIMK đều

5 tháng 7 2020

A B C M 1 2 Q G

A) XÉT \(\Delta ABM\)\(\Delta ACM\)

\(AB=AC\left(GT\right)\)

\(\widehat{A_1}=\widehat{A_2}\left(GT\right)\)

AM LÀ CẠNH CHUNG

=>\(\Delta ABM\)=\(\Delta ACM\)( C-G-C)

TRONG TAM GIÁC CÂN TIA PHÂN GIÁC CŨNG LÀ ĐƯỜNG CAO

=> AM LÀ  ĐƯỜNG CAO CỦA  \(\Delta ABC\)

\(\Rightarrow AM\perp BC\)

B) TRONG TAM GIÁC CÂN TIA PHÂN GIÁC CŨNG LÀ TRUNG TUYẾN 

=> AM LÀ TRUNG TUYẾN THỨ NHẤT CỦA  \(\Delta ABC\)

MÀ BG LÀ ĐƯỜNG TRUNG TUYẾN THỨ HAI CỦA  \(\Delta ABC\)

HAI ĐƯỜNG TRUNG TUYẾN NÀY CẮT NHAU TẠI G

\(\Rightarrow G\)LÀ TRỌNG TÂM CỦA \(\Delta ABC\)