K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 8 2018

a) Vận dụng đinh lý 1 về đường trung bình của tam giác suy ra APMQ là hình thoi do có 4 cạnh bằng nhau.

b) Vì PQ ^ AM mà AM ^ BC (tính chất tamgiacs cân) nên PQ//BC.

22 tháng 10 2023

a: ΔABC cân tại A

mà AM là đường trung tuyến

nên AM là đường cao và AM là phân giác của \(\widehat{BAC}\)

Xét tứ giác APMQ có

AP//MQ

AQ//MP

Do đó: APMQ là hình bình hành

Hình bình hành APMQ có AM là phân giác của góc PAQ

nên APMQ là hình thoi

b: Xét ΔABC có

M là trung điểm của BC

MP//AC

Do đó: P là trung điểm của AB

Xét ΔABC có

M là trung điểm của BC

MQ//AB

Do đó: Q là trung điểm của AC

Xét ΔABC có

P,Q lần lượt là trung điểm của AB,AC

=>PQ là đường trung bình của ΔABC

=>PQ//BC

c: Xét ΔABC có M,Q lần lượt là trung điểm của CB,CA

=>MQ là đường trung bình của ΔABC

=>MQ//AB và \(MQ=\dfrac{AB}{2}\)

mà \(MQ=\dfrac{MD}{2}\)

nên MD=AB

MQ//AB

=>MD//AB

Xét tứ giác ABMD có

AB//MD

AB=MD

Do đó: ABMD là hình bình hành

d: Xét tứ giác AMCD có

Q là trung điểm chung của AC và MD

Do đó: AMCD là hình bình hành

Hình bình hành AMCD có \(\widehat{AMC}=90^0\)

nên AMCD là hình chữ nhật

Hình chữ nhật AMCD muốn trở thành hình vuông thì CA là phân giác của góc MCD

=>\(\widehat{ACB}=\dfrac{1}{2}\cdot90^0=45^0\)

22 tháng 10 2023

Sao MQ= MD/2 ạ?

21 tháng 12 2016

ohomọi người giúp mình với mình ko hiểu bài trên cho lắm

 

14 tháng 12 2021

Cm: a) Ta có: BA ⊥⊥AC (gt)

                        HD // AB (gt)

=> HD ⊥⊥AC => ˆHDA=900HDA^=900

Ta lại có: AC ⊥⊥AB (gt)

   HE // AC (gt)

=> HE ⊥⊥AB => ˆHEA=900HEA^=900

Xét tứ giác AEHD có: ˆA=ˆAEH=ˆHDA=900A^=AEH^=HDA^=900

=> AEHD là HCN => AH = DE

b) Gọi O là giao điểm của AH và DE

Ta có: AEHD là HCN => OE = OH = OD = OA
=> t/giác OAD cân tại O => ˆOAD=ˆODAOAD^=ODA^ (1)

Xét t/giác ABC vuông tại A có AM là đường trung tuyến

-> AM = BM = MC = 1/2 BC
=> t/giác AMC cân tại M => ˆMAC=ˆCMAC^=C^

Ta có: ˆB+ˆC=900B^+C^=900 (phụ nhau)

  ˆC+ˆHAC=900C^+HAC^=900 (phụ nhau)

=> ˆB=ˆHACB^=HAC^ hay ˆB=ˆOADB^=OAD^ (2) 
Từ (1) và (2) => ˆODA=ˆBODA^=B^

Gọi I là giao điểm của MA và ED

Xét t/giác IAD có: ˆIAD+ˆIDA+ˆAID=1800IAD^+IDA^+AID^=1800 (tổng 3 góc của 1 t/giác)

=> ˆAID=1800−(IAD+ˆIDA)AID^=1800−(IAD+IDA^)

hay ˆAID=1800−(ˆB+ˆC)=1800−900=900AID^=1800−(B^+C^)=1800−900=900

=> AM⊥DEAM⊥DE(Đpcm)

c) (thiếu đề)

30 tháng 8 2020

Mình không biết vẽ hình trên đây bạn tự vẽ hình nhé

Xét tam giác BAC có:        BM=CM(M là trung điểm của BC)

                                           ME//AC(Mx//AC)

=>AE=BE(hay E là trung điểm của AB)

Xét tam giác CBA có:        BM=CM(M là trung điểm của BC)

                                          MF//AB(My//AB)

=>AF=CF(hay F là trung điểm của AC)

Xét tam giác ABC có:        AE=BE

                                          AF=CF

=>EF là đường trung bình của tam giác ABC

b, Xét tứ giác AEMF có:    ME//AF(Mx//AC)

                                          MF//AE(My//AB)

=>AEMF là hình bình hành

Ta có: AE=BE; AF=CF

mà AB=AC(tam giác ABC cân tại A)

=>AE=BE=AF=CF

Xét hình bình hành AEMF có:AF=AE

=>AEMF là hình thoi

=> AM vuông góc với EF và AM đi qua trung điểm của EF

=>AM là đường trung trực của EF

29 tháng 12 2018

a) Mx đi qua trung điểm M của BC và song song với AC. Suy ra Mx đi qua trung điểm E của AB (theo Định lí 1).

Tương tự, ta được F cũng là trung điểm của AC. Khi đó EF trở thành đường trung bình của tam giác ABC;

b) Do ME và MF cũng là đường trung bình nên có ME = MF = AE = AF. Suy ra AM là đường trung trực của EF.

22 tháng 10 2023

a: Xét ΔACB và ΔEBC có

\(\widehat{ABC}=\widehat{ECB}\)(AB//EC)

BC chung

\(\widehat{ACB}=\widehat{EBC}\)(AC//BE)

Do đó: ΔACB=ΔEBC

b: ΔACB=ΔEBC

=>AC=BE

mà AC=BD

nên BE=BD

=>ΔBDE cân tại B

c: ΔBDE cân tại B

=>\(\widehat{BDE}=\widehat{BED}\)

=>\(\widehat{BDC}=\widehat{BED}\)

mà \(\widehat{BED}=\widehat{ACD}\)(AC//BE)

nên \(\widehat{ACD}=\widehat{BDC}\)