K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 5 2022

refer

a) Vì AH là đường trung tuyến của tam giác ABC cân tại A:

nên HB=HC

 Xét tam giác AHB và tam giác AHC:

có:+AB=AC( tam giác ABC cân tại A)

      +HB=HC(cmt)

      +AH: cạnh chung

Vậy tam giác AHB=tam giác AHC(c.c.c)

b) Vì tam giác AHB=tam giác AHC(cmt)

nên: góc AHB=góc AHC=90 độ( 2 góc tương ứng )

c) HB=HC=BC2=102=5cmHB=HC=BC2=102=5cm

Áp dụng định lí Pytago vào tam giác ABH vuông tại H:

có: AB2=AH2+BI2AB2=AH2+BI2

hay:132=AH2+52132=AH2+52

⇒AH2=132−52⇒AH2=132−52

⇔AH=√132−52=12⇔AH=132−52=12

Vậy AH=12cm

 

 

 

 

11 tháng 5 2022

a, Xét Δ AHB và Δ AHC, có :

AH là cạnh chung

AB = AC (Δ ABC cân tại A)

HB = HC (AH là đường trung tuyến của BC)

=> Δ AHB = Δ AHC (c.c.c)

b, Xét Δ ABC cân tại A, có :

AH là đường trung tuyến

=> AH là đường cao

=> \(\widehat{AHC}=\widehat{AHB}=90^o\)

c, đề kì dzậy

26 tháng 4 2017

Để tớ làm lại cho. Nguyên phần tính BG luôn, cái kia out :))

Ta có tam giác ABC cân tại A => AD vừa là phân giác vừa là đường cao => AD vuông góc BC tại D (bổ sung kí hiệu vô nhé)

Ta có: D là trung điểm BC => BD = CD = BC : 2 = 6 : 2 = 3 (cm)
Xét tam giác ABD vuông tại D có:

\(AD^2+BD^2=AB^2\left(pytago\right)\)

\(AD^2+3^2=5^2\)

\(AD^2=5^2-3^2=25-9=16\)

\(\Rightarrow AD=\sqrt{16}=4\left(cm\right)\)

Vì G là trọng tâm tam giác ABC => \(GD=\frac{1}{3}AD\Leftrightarrow GD=\frac{1}{3}.4=\frac{4}{3}\left(cm\right)\)

Xét tam giác BGD vuông tại D có:

\(GD^2+BD^2=BG^2\left(pytago\right)\)

\(\left(\frac{4}{3}\right)^2+3^2=BG^2\)

\(\frac{97}{9}=BG^2\Leftrightarrow BG=\sqrt{\frac{97}{9}}\approx3,3\left(cm\right)\)

26 tháng 4 2017

B C A D F E G

a/ Ta có tam giác ABC cân tại A => AD vừa là đường phân giác vừa là trung tuyến => BD = CD

Xét tam giác ABC có 2 đường trung tuyến AD;BE cắt nhau tại G 

=> G là trọng tâm của tam giác ABC

=> CF là đường trung tuyến thứ 3

=> F là trung điểm AB hay FB = FA

b/ Vì tam giác ABC cân tại A => AB = AC = 5 cm

 Ta có: \(AE=EC=\frac{AC}{2}=\frac{5}{2}=2,5\left(cm\right)\)(Vì E là trung điểm AC)

Xét tam giác BEC vuông tại E có:

   \(BE^2+EC^2=BC^2\left(pytago\right)\)

  \(BE^2+2,5^2=6^2\)

  \(BE^2=6^2-2,5^2=29,75\)

\(\Rightarrow BE=\sqrt{29,75}\approx5,5\left(cm\right)\)

Vì G là trọng tâm tam giác ABC (cmt) 

\(\Rightarrow BG=\frac{2}{3}BE=\frac{2}{3}.5,5\approx3,7\left(cm\right)\)

19 tháng 5 2022

Vì G là trọng tâm ΔABC

⇒AG=2323 AH=2323 18=12(cm)

Mà AG=2GH

⇒GH=AG2AG2 =122122 =6(cm)

BH=HC(do AH là trung tuyến BC)

⇒BH=HC=BC2BC2 =162162 =8(cm)

Xét ΔGHC có:

   GH²+HC²=GC²(Định lí Pi-ta-go)

⇒6²+8²=GC²

⇒36+64=GC²

⇒GC²=100=10²

⇒GC=10(cm)

Mà GC=2GI

⇒GI=GC2GC2 =102102=5(cm)

Vậy độ dài cạnh GI là 5cm

d)Ta có:

Theo b) GI=GK

⇒ΔIGK là tam giác cân tại G

{GC=2GIGB=2GK{GC=2GIGB=2GK

Mà GI=GK

⇒GC=GB

⇒ΔGBC là tam giác cân tại G

Ta có:

∠KIG=∠IKG=180∗−∠IGK2180∗−∠IGK2

∠GBC=∠GCB=180∗−∠BGC2180∗−∠BGC2

Mà ∠IGK=∠BGC(đối đỉnh)

⇒∠KIG=∠GCB

Mà 2 góc ở vị trí so le trong 

⇒IK=BC

19 tháng 5 2022

Tham khảo

Anser reply image

20 tháng 3 2016

độ dài cạnh IH là :20:2=10(cm)

áp dụng định lí py-ta-go ta co:

\(EH^2=EI^2+IH^2=10^2+24^2=100+576=676\)

\(EH=\sqrt{676}\left(cm\right)\)

15 tháng 7 2021

Vẽ điểm K sao cho D là trung điểm của GK ta tính được BK=CG=10; BG=6; GD=4; GK=8

ΔΔBGK có 3 cạnh bằng 6;8;10 nên

ˆBGD=90oBGD^=90o(định lý Pytago đảo)

BD2=BG2+GD2=62+42=52BD2=BG2+GD2=62+42=52

⇒BD=√52⇒BC=2√52≈14,4cm