K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 4 2016

Bạn tự vẽ hình nha!

a.

AD // BC 

=> A1 = C1 (2 góc so le trong) (1)

Xét tam giác ADM và tam giác CBM:

A1 = C1 (theo 1)

AM = CM (BM là trung tuyến của tam giác ABC)

M1 = M2 (2 góc đối đỉnh)

=> Tam giác ADM = Tam giác CBM (g.c.g)

=> AD = CB (2 cạnh tương ứng)

b.

Xét tam giác ABM và tam giác CDM:

AM = CM (BM là trung tuyến của tam giác ABC)

M3 = M4 (2 góc đối đỉnh)

BM = DM (Tam giác ADM = Tam giác CBM)

=> Tam giác ABM = Tam giác CDM (c.g.c)

=> AB = CD (2 cạnh tương ứng)

mà AB = AC (tam giác ABC cân tại A)

=> AC = CD

=> Tam giác CAD cân tại C.

c.

Tam giác ABM có: 

BM < AB + AM

=> BM < AB + AC/2

=> BM < AC + AB/2

29 tháng 4 2018

Vẽ hình đi 

29 tháng 4 2018

 Hỏa Long Natsu bác eii, cái bài này là ae mk tự vẽ hình hay sao ý.

A B C G 1 2 1 2 M 30cm H 36cm

a) Xét \(\Delta AHB\text{ và }\Delta AHC\)

\(AB=AC\)

\(\widehat{A_1}=\widehat{A_2}\)

AH là cạnh chung

Nên: \(\Delta AHB=\Delta AHC\left(c-g-c\right)\)

\(\Rightarrow BH=CH\left(2\text{ cạnh tương ứng}\right)\)

\(\Rightarrow\Delta ABC\perp AH\left(\text{là phân giác cũng vừa là đường cao}\right)\)

\(\Rightarrow AH\perp BC\)

b) \(BH=\frac{36}{2}=18\left(cm\right)\)

\(AB^2=AH^2+BH^2\left(\text{áp dụng định lý Py-Ta-Go}\right)\)

\(AH^2=AB^2-BH^2\)

\(AH^2=30^2-18^2\)

\(AH^2=576\)

\(\Rightarrow AH=\sqrt{576}=24\left(cm\right)\)

c) \(AG=\frac{2}{3}.AH\)

\(\Rightarrow AH.\frac{2}{3}=24.\frac{2}{3}=16\left(cm\right)\)

\(AM=\frac{AB}{2}=\frac{30}{2}=15\left(cm\right)\)

\(\Rightarrow BA^2=AM^2+BM^2\)

\(\Rightarrow MB^2=BA^2-BM^2\)

\(MB^2=30^2-15^2\)

\(MB^2=\sqrt{675}=26\)

d) Bạn tự giải nha

28 tháng 6 2021

A B C N M K

a) Ta có: AN = NB = 1/2AB (gt)

           AM = MC = 1/2AC (gt)

mà AB = AC (gt)

=> AN = NB = AM = MC
Xét tam giác ABM và tam giác ACN 

có: AM = AN (gt)

 \(\widehat{A}\): chung

AB = AC (gt)

=> tam giác ABM = tam giác ACN (c.g.c)

b) Ta có: AN = NB (gt)

 AM = MC (gt)

=> NM là đường trung bình của tam giác ABC

=> MN // BC

c) Ta có: tam giác ABM = tam giác ACN (cmt)

=> \(\widehat{ABM}=\widehat{ACN}\)

Mà \(\widehat{B}=\widehat{ABM}+\widehat{MBC}\)

 \(\widehat{C}=\widehat{ACN}+\widehat{NCB}\)

\(\widehat{B}=\widehat{C}\) (gt)

=> \(\widehat{KBC}=\widehat{KCB}\) => tam giác KBC cân tại K có KD là đường trung truyến => KD cũng là đường cao => KD \(\perp\)BC

Tam giác ABC cân tại A có AD là đường trung tuyến => AD cũng là đường cao => AD \(\perp\)BC

=> KD \(\equiv\)AD => A, K, D thẳng hàng

a, Xét \(\Delta ABM\)và \(\Delta CAN\) có

AB = AC ( \(\Delta\)cân )

\(\widehat{A}\)  chung

AN = AM 

\(\Rightarrow\Delta ABM=\Delta CAN\)( c.g.c)

12 tháng 4 2016

a, Xét tam giác ABH và tam giác ACH có 

góc bah =góc cah

ab =ac

góc B = góc C

=> tam giác abh = tam giác ach (g.c.g)

=>hb=hc

=>góc ahb = góc ahc

Mà góc AHB + góc AHC=180 độ

=>ah vuông góc với bc

b,bh=hc=36:2=18cm

áp dụng định lí PY-TA-GO vào tam giác ABH ta có 

ab^2=ah^2+bh^2

=>ah^2=ab^2-bh^2

=>ah=24cm

a) xét tam giác BAH và tam giác HAC có:

AB = AC (gt)

 góc A1 = góc A2 ( vì AH là p/giác)

   AH chung

=> tam giác BAH = tam giác HAC ( c.g.c)

=> HB = HC

ta có: góc AHB + góc AHC = 1800 ( kề bù)

                => 2 góc AHB = 1800

               => góc AHB = \(\frac{180^0}{2}=90^0\)

=> AH vuông góc BC