Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét tam giác vuông AHB và tam giác vuông AHC có :
AB = AC ( tam giác ABC cân tại A )
AH chung
=> Tam giác vuông AHB = tam giác vuông AHC ( ch - cgv )
b) Từ tam giác vuông AHB = tam giác vuông AHC
=> ^BAH = ^CAH ( hai góc tương ứng )
Xét tam giác vuông AHE và tam giác vuông AHF có :
AH chung
^BAH = ^CAH ( cmt )
=> tam giác vuông AHE = tam giác vuông AHF ( ch - gn )
=> HE = HF ( hai cạnh tương ứng )
A B C D K H F E
Kẻ DK \(\perp\) BH
Ta có: DK \(\perp\)BH
AC \(\perp\) BH
\(\Rightarrow\)DK // AC
\(\Rightarrow\) \(\widehat{BDK}=\widehat{C}\) (hai góc đồng vị) (1)
Vì \(\Delta ABC\) cân tại A \(\Rightarrow\) \(\widehat{DBF}=\widehat{C}\) (2)
Từ (1) và (2) suy ra: \(\widehat{BDK}=\widehat{DBF}\)
Xét hai tam giác vuông BDK và DBF có:
BD: cạnh huyền chung
\(\widehat{BDK}=\widehat{DBF}\) (cmt)
Vậy: \(\Delta BDK=\Delta DBF\left(ch-gn\right)\)
Suy ra: BK = DF (hai cạnh tương ứng) (3)
Ta lại có DE // KH, DK // EH nên chứng minh được: DE = KH (4)
Từ (3) và (4) suy ra: DE + DF = KH + BK = BH (đpcm).
A B C H K a,\(\Delta ABC\) cân tại A => \(\widehat{B}=\widehat{C}\)
Xét \(\Delta ABM\) và \(\Delta ACM\) có :
AB=AC (gt)
\(\widehat{B}=\widehat{C}\left(cmt\right)\)
BM=MC(gt)
Suy ra: \(\Delta ABM\) = \(\Delta ACM\)(c.g.c)
b,Xét \(\Delta\)HMB và \(\Delta\)KMC có:
\(\widehat{H}=\widehat{K}\left(=90^o\right)\)
\(\widehat{B}=\widehat{C}\left(cmt\right)\)
BM=MC(gt)
Suy ra : \(\Delta\)HMB = \(\Delta\)KMC(ch-gn)
=>BH = CK (2 cạnh tương ứng)
Sai đề rồi phải là kẻ \(AH\perp BC\left(H\in BC\right)\) nhé!
A B C H E F
a) Xét 2 Δ vuông: Δ AHB = Δ AHC (c.h-g.n) vì:
\(\hept{\begin{cases}AB=AC\left(gt\right)\\\widehat{ACB}=\widehat{ABC}\left(gt\right)\end{cases}}\)
=> \(BH=HC\)
b) Xét 2 Δ vuông: Δ BHF = Δ CHE (c.h-g.n) vì:
\(\hept{\begin{cases}HB=HC\left(p.a\right)\\\widehat{HBF}=\widehat{HCE}\left(gt\right)\end{cases}}\)
=> \(HE=HF\) => Tam giác HEF cân tại H
a) Xét tam giác BAH và tam giác CAH, có:
AH: cạnh chung
AB = AC ( tam giác ABC cân tại A )
góc AHB = góc AHC ( = 90 độ )
-> tam giác BAH = tam giác CAH ( ch-cgv )
-> HB = HC ( 2 cạnh tương ứng )
b) Xét tam giác FBH và tam giác ECH, có:
HB = HC ( cmt )
góc D = góc E ( = 90 độ )
góc B = góc C ( tam giác ABC cân tại A )
-> tam giác FBH = tam giác ECH ( ch-gn )
-> HF = HE ( 2 cạnh tương ứng )
-> tam giác HEF là tam giác cân tại H
k cho mình nha mỏi tay quá !!! thanks