\(BH\perp AC\) tại H. Từ điểm M trên cạnh BC vẽ
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 6 2020

a) Xét tam giác vuông AHB và tam giác vuông AHC có :

AB = AC ( tam giác ABC cân tại A )

AH chung

=> Tam giác vuông AHB = tam giác vuông AHC ( ch - cgv )

b) Từ tam giác vuông AHB = tam giác vuông AHC

=> ^BAH = ^CAH ( hai góc tương ứng )

Xét tam giác vuông AHE và tam giác vuông AHF có :

AH chung

^BAH = ^CAH ( cmt )

=> tam giác vuông AHE = tam giác vuông AHF ( ch - gn )

=> HE = HF ( hai cạnh tương ứng )

19 tháng 5 2017

A B C D K H F E

Kẻ DK \(\perp\) BH

Ta có: DK \(\perp\)BH

AC \(\perp\) BH

\(\Rightarrow\)DK // AC

\(\Rightarrow\) \(\widehat{BDK}=\widehat{C}\) (hai góc đồng vị) (1)

\(\Delta ABC\) cân tại A \(\Rightarrow\) \(\widehat{DBF}=\widehat{C}\) (2)

Từ (1) và (2) suy ra: \(\widehat{BDK}=\widehat{DBF}\)

Xét hai tam giác vuông BDK và DBF có:

BD: cạnh huyền chung

\(\widehat{BDK}=\widehat{DBF}\) (cmt)

Vậy: \(\Delta BDK=\Delta DBF\left(ch-gn\right)\)

Suy ra: BK = DF (hai cạnh tương ứng) (3)

Ta lại có DE // KH, DK // EH nên chứng minh được: DE = KH (4)

Từ (3) và (4) suy ra: DE + DF = KH + BK = BH (đpcm).

23 tháng 4 2018

A B C H K a,\(\Delta ABC\) cân tại A => \(\widehat{B}=\widehat{C}\)

Xét \(\Delta ABM\)\(\Delta ACM\) có :

AB=AC (gt)

\(\widehat{B}=\widehat{C}\left(cmt\right)\)

BM=MC(gt)

Suy ra: \(\Delta ABM\) = \(\Delta ACM\)(c.g.c)

b,Xét \(\Delta\)HMB và \(\Delta\)KMC có:

\(\widehat{H}=\widehat{K}\left(=90^o\right)\)

\(\widehat{B}=\widehat{C}\left(cmt\right)\)

BM=MC(gt)

Suy ra : \(\Delta\)HMB = \(\Delta\)KMC(ch-gn)

=>BH = CK (2 cạnh tương ứng)

27 tháng 1 2021

Sai đề rồi phải là kẻ \(AH\perp BC\left(H\in BC\right)\) nhé!

A B C H E F

a) Xét 2 Δ vuông: Δ AHB = Δ AHC (c.h-g.n) vì:

\(\hept{\begin{cases}AB=AC\left(gt\right)\\\widehat{ACB}=\widehat{ABC}\left(gt\right)\end{cases}}\)

=> \(BH=HC\)

b) Xét 2 Δ vuông: Δ BHF = Δ CHE (c.h-g.n) vì:

\(\hept{\begin{cases}HB=HC\left(p.a\right)\\\widehat{HBF}=\widehat{HCE}\left(gt\right)\end{cases}}\)

=> \(HE=HF\) => Tam giác HEF cân tại H

25 tháng 4 2018

a)       Xét tam giác BAH và tam giác CAH, có:

                               AH: cạnh chung

                               AB = AC ( tam giác ABC cân tại A )

                               góc AHB = góc AHC ( = 90 độ )

                           -> tam giác BAH = tam giác CAH ( ch-cgv )

                           -> HB = HC ( 2 cạnh tương ứng )

b)       Xét tam giác FBH  và tam giác ECH, có:

                               HB = HC ( cmt )

                               góc D = góc E ( = 90 độ )

                               góc B = góc C ( tam giác ABC cân tại A )

                           -> tam giác FBH = tam giác ECH ( ch-gn )

                           -> HF = HE ( 2 cạnh tương ứng )

                           -> tam giác HEF là tam giác cân tại H

 k cho mình nha mỏi tay quá !!! thanks

25 tháng 4 2018

k cho mình nha !!!