Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABM và ΔACN có
AB=AC
góc ABM=góc ACN
BM=CN
=>ΔABM=ΔACN
=>AM=AN
b: góc MBD=góc ECN
=>góc KBC=góc KCB
=>K nằm trên trung trực của BC
=>A,H,K thẳng hàng
a) Ta thấy \(\widehat{ECN}=\widehat{ACB}\) (Hai góc đối đỉnh)
Tam giác ABC cân tại A nên \(\widehat{ACB}=\widehat{ABC}\Rightarrow\widehat{ECN}=\widehat{DBM}\)
Xét tam giác vuông BDM và CEN có:
BD = CE
\(\widehat{ECN}=\widehat{DBM}\) (cmt)
\(\Rightarrow\Delta BDM=\Delta CEN\) (Cạnh góc vuông và góc nhọn kề)
\(\Rightarrow BM=CN\) (Hai cạnh tương ứng)
b) Do \(\Delta BDM=\Delta CEN\Rightarrow MD=NE\)
Ta thấy MD và NE cùng vuông góc BC nên MD // NE
Suy ra \(\widehat{DMI}=\widehat{ENI}\) (Hai góc so le trong)
Xét tam giác vuông MDI và NEI có:
MD = NE
\(\widehat{DMI}=\widehat{ENI}\)
\(\Rightarrow\Delta MDI=\Delta NEI\) (Cạnh góc vuông và góc nhọn kề)
\(\Rightarrow MI=NI\)
Xét tam giác KMN có KI là đường cao đồng thời trung tuyến nên KMN là tam giác cân tại K.
c) Ta có ngay \(\Delta ABK=\Delta ACK\left(c-g-c\right)\Rightarrow\widehat{ABK}=\widehat{ACK}\) (1) và BK = CK
Xét tam giác BMK và CNK có:
BM = CN (cma)
MK = NK (cmb)
BK = CK (cmt)
\(\Rightarrow\Delta BMK=\Delta CNK\left(c-g-c\right)\Rightarrow\widehat{MBK}=\widehat{NCK}\) (2)
Từ (1) và (2) suy ra \(\widehat{ACK}=\widehat{NCK}\)
Chúng lại là hai góc kề bù nên \(\widehat{ACK}=\widehat{NCK}=90^o\)
Vậy \(KC\perp AN\)
VÌ \(\Delta ABC\)CÂN TẠI A \(\Rightarrow\hept{\begin{cases}AB=AC\\\widehat{B}=\widehat{C}\end{cases}}\)
A) XÉT \(\Delta ABH\)VÀ\(\Delta ACH\)CÓ
\(AB=AC\left(CMT\right)\)
\(\widehat{B}=\widehat{C}\left(CMT\right)\)
\(\widehat{AHB}=\widehat{AHC}=90^o\)
=>\(\Delta ABH\)=\(\Delta ACH\)(ch-cgv)
b) vì\(\Delta ABH\)=\(\Delta ACH\)(cmt)
=> BH=CH ( HAI CẠNH TƯƠNG ỨNG)
=> AH LÀ TRUNG TUYẾN CỦA \(\Delta ABC\)(ĐPCM)
C) TA CÓ \(\widehat{ABH}+\widehat{ABD}=180^o\left(kb\right)\)
\(\widehat{ACH}+\widehat{ACE}=180^o\left(kb\right)\)
MÀ \(\widehat{ABH}=\widehat{ACH}\left(CMT\right)\)
\(\Rightarrow\widehat{ABD}=\widehat{ACE}\)
XÉT \(\Delta ABD\)VÀ\(\Delta ACE\)CÓ
\(AB=AC\left(CMT\right)\)
\(\widehat{ABD}=\widehat{ACE}\left(CMT\right)\)
\(DB=CE\left(GT\right)\)
=>\(\Delta ABD\)=\(\Delta ACE\)(C-G-C)
=>AD=AE
=> \(\Delta ADE\)CÂN TẠI A
D)TỪ CHỨNG MINH TRÊN T DỄ DÀNG CM ĐƯỢC \(\Delta HDI=\Delta HEI\)
\(\Rightarrow\widehat{DHI}=\widehat{EHI}\)
MÀ HAI GÓC NÀY KỀ BÙ
\(\Rightarrow\widehat{DHI}=\widehat{EHI}=\frac{180^o}{2}=90^o\)
ta lại có \(\widehat{AHD}+\widehat{DHI}=\widehat{AHI}\)
THAY \(90^o+90^o=\widehat{AHI}\)
\(\Rightarrow\widehat{AHI}=180^o\)
=> \(\widehat{AHD}\)VÀ\(\widehat{DHI}\)KỀ BÙ
=> BA ĐIỂM A,H,I THẲNG HÀNG
Hình tự kẻ nha
a)Xét 2 tam giác vuông ABH và ACH có
Góc AHB = góc AHC (=90°)
AB= AC ( tam giác ABC cân tại A)
Góc ABC = góc ACB (tam giác ABC cân tại A)
=>2 tam giác vuông ABH=ACH (cạnh huyền -góc nhọn)
b)Tam giác ABC cân =>góc ABC=gócACB
=>gócABM=gócACN
Xét 2 tam giác ABM và ACN
AB=AC ( tam giác ABC cân tại A)
Góc ABM=góc ACN (cmt)
BM=CN(gt)
=> tam giác ABM=tam giác ACN
=>AM=AN
Do đó tam giác AMN cân tại A
c) Phần này hình như sai đề
a) Xét t/giác ABH và t/giác ACH
có: AB = AC (gt)
\(\widehat{H_1}=\widehat{H_2}=90^0\)(gt)
\(\widehat{B_1}=\widehat{C_1}\) (gt)
=> t/giác ABH = t/giác ACH (ch - gn)
b) Ta có: \(\widehat{B_1}+\widehat{ABM}=180^0\)(kề bù)
\(\widehat{C_1}+\widehat{ACN}=180^0\) (kề bù)
Mà \(\widehat{B_1}=\widehat{C_1}\) (gt) => \(\widehat{ABM}=\widehat{ACN}\)
Xét t/giác ABM và t/giác ACN
có AB = AC (gt)
\(\widehat{ABM}=\widehat{ACN}\) (cmt)
BM = CN (gt)
=> t/giác ABM = t/giác ACN (c.g.c)
=> AM = AN (2 cạnh t/ứng)
=> t/giác AMN cân
c) Ta có: t/giác MEB vuông tại A => \(\widehat{M}+\widehat{B_2}=90^0\)
t/giác FCN vuông tại F => \(\widehat{C_2}+\widehat{N}=90^0\)
Mà \(\widehat{M}=\widehat{N}\)(Vì t/giác AMN cân tại A) => \(\widehat{B_2}=\widehat{C_2}\) (1)
Ta lại có: \(\widehat{B_2}=\widehat{B_3}\) (Đối đỉnh); \(\widehat{C_2}=\widehat{C_3}\)(đối đỉnh) (2)
Từ (1) và (2) => \(\widehat{B_3}=\widehat{C_3}\) => t/giác BKC cân tại K
có KH là đường cao
=> KH cũng là đường trung trực của cạnh BC (t/c của t/giác cân) (3)
(đoạn này chưa học có thể xét t/giác KBH và t/giác KCH => BH = CH => KH là đường trung trực)
t/giác ABH = t/giác ACH (cm câu a) => BH = CH
=> AH là đường trung tuyến
mà AH cũng là đường cao
=> AH là đường trung trực của cạnh BC (4)
Do A \(\ne\)K (5)
Từ (3); (4); (5) => A, H, K thẳng hàng
a) △ABC cân ⇒ \(\widehat{ABC}=\widehat{ACB}\) ⇒\(\widehat{ABM}=\widehat{ACN}\)
Xét △ABM và △ACN có:
\(AB=AC\) ( Vì △ABC cân)
\(\widehat{ABM}=\widehat{ACN}\left(cmt\right)\)
BM=CN(gt)
Do đó : △ABC=△ACN\(\left(c.g.c\right)\)
b)Xét △vuoongAHB và △vuoongAKC có
AB=AC(vì △ABC cân)
\(\widehat{HAB}=\widehat{KAC}\) (vì △ABM=△ACN)
⇒△AHB=△AKC ( cạnh huyền góc nhọn)
⇒AH=AK
a, Ta có : ^ABM = ^MBC - ^ABC (1)
^ACN = ^NCB - ^ACB (2)
Từ (1) ; (2) suy ra ^ABM = ^ACN
Xét tam giác ABM và tam giác ANC có :
^ABM = ^ANC ( cmt )
AB = AC ( gt )
MB = NC (gt)
Vậy tam giác ABM = tam giác ACN ( c.g.c )
=> AM = AN ( 2 cạnh tương ứng )
Xét tam giác AMN có : AN = AM
Vậy tam giác AMN là tam giác cân tại A
=> ^M = ^N (3)
b, Ta có : ^AMB = ^ABH ( cùng phụ ^HBM ) (4)
^ACK = ^ANC ( cùng phụ ^KCN ) (5)
Từ (3) ; (4) ; (5) suy ra : ^ABH = ^ACK
=> ^HBM = ^KCN
Xét tam giác AHB và tam giác AKC ta có :
^ABH = ^ACK ( cmt )
AB = AC
^AHB = ^AKC = 900
Vậy tam giác AHB = tam giác AKC ( ch - gn )
=> AH = AK ( 2 cạnh tương ứng )
c, Ta có : ^HBM = ^OBC ( đối đỉnh )
^KCN = ^BCO ( đối đỉnh )
mà ^HBM = ^KCN (cmt)
Xét tam giác OBC có :
^OBC = ^OCB vậy tam giác OBC cân tại O
mọi người lamf giúp mình vs ak
mình đang cần gấp mọi ng giúp mình với ạ