Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
GỌI I LA GIAO DIEM CAC DUONG FAN GIAC CUA TAN GIAC BGC .Ba diem A G I co thang hang khong vi sao
a: Xét ΔBNC và ΔCMB có
NB=MC
\(\widehat{NBC}=\widehat{MCB}\)
BC chung
Do đó; ΔBNC=ΔCMB
b: Sửa đề: Cm ΔANM cân tại A
Xét ΔANM có AN=AM
nên ΔANM cân tại A
C) MN // BC
o l m . v n
a, tam giác ABC cân tại A (gt)
=> AB = AC (Đn)
có M;N lần lượt là trung điểm của AC;AB (gt) => AM = MC = 1/2AC và AN = BN = 1/2BC (tc)
=> AN = AM = BN = CM
xét tam giác NBC và tam giác MCB có : BC chung
^ABC = ^ACB do tam giác ABC cân tại A (Gt)
=> tam giác NBC = tam giác MCB (c-g-c) (1)
b, (1) => ^KBC = ^KCB (đn)
=> tam giác KBC cân tại K (dh)
c, có tam giác ABC cân tại A (gt) => ^ABC = (180 - ^BAC) : 2 (tc)
có AM = AN (câu a) => tam giác AMN cân tại A (đn) => ^ANM = (180 - ^BAC) : 2 (tc)
=> ^ABC = ^ANM mà 2 góc này đồng vị
=> MN // BC (đl)
Đáp án:a) Xét 2 tam giác ABD và ACD có:
góc BAD = góc CAD( AD là tia phân giác của tg ABC)
AB= AC( tg ABC cân tại A)
góc ABC= góc ACB( tg ABC cân tại A)
=> tg ABD = ACD(gcg)
b) xét ABM và CGM
=> 2 tg bằng nhau theo TH (cgc)
=> AP=CG
c)Ta có : MG = MP (1)
Ta lại có: PAM = GCM(cmt)
mà GCM = GAM ( tg AGC cân tại G do tính chất đường trung tuyến)
=> AM là tia phân giác của tg GAP(2)
(1),(2)=> AM vừa là đường trung tuyến vừa là tia phân giác của tg PAG
Hay tg PAG là tg cân
Hình bạn tự vẽ nha
a) vì tam giác ABC cân tại A
nên AB=AC; \(\widehat{B}=\widehat{C}\)
mà CN và BM là đường trung tuyến
=>BM=NC
=>AN=BN ; AM=CM
Xét \(\Delta BNC\)và \(\Delta CMB\)
có: BC là cạnh chung
BN=CM (gt)
BM=NC (gt)
do đó: \(\Delta BNC=\Delta CMB\)
a) Ta có: ΔABC cân tại A
Nên: AB=AC
Mà: CN là đường trung tuyến => NB=NA
BM là đường trung tuyến => MA=MC
Suy ra: NB=NA=MA=MC
Xét ΔBNC và ΔCMB
Có: BN=CM (cmt)
\(\widehat{B}\)=\(\widehat{C}\)(do ΔABC cân)
BC chung
Suy ra: ΔBNC=ΔCMB (c-g-c)
tự kẻ hình nghen
a) ta có AB=AC=> 1/2AB=1/2AC=> AN=NB=AM=MC
xét tam giác BNC và tam giác CMB có
NB=MC(cmt)
ABC=ACB(gt)
BC chung
=> tam giác BNC= tam giác CMB(cgc)
b) từ tam giác BNC=tam giác CMB=> MBC=NCB( hai góc tương ứng)
=> tam giác BKC cân K
c) Vì AM=AN(cmt)=> tam giác AMN cân A=> AMN=ANM=(180-MAN)/2
vì tam giác ABC cân A=> ABC=ACB=(180-BAC)/2
=> AMN=ACB mà AMN đồng vị với ACB=> MN//BC
a, tam giác ABC cân tại A (gt)
=> AB = AC (Đn)
có M;N lần lượt là trung điểm của AC;AB (gt) => AM = MC = 1/2AC và AN = BN = 1/2BC (tc)
=> AN = AM = BN = CM
xét tam giác NBC và tam giác MCB có : BC chung
^ABC = ^ACB do tam giác ABC cân tại A (Gt)
=> tam giác NBC = tam giác MCB (c-g-c) (1)
b, (1) => ^KBC = ^KCB (đn)
=> tam giác KBC cân tại K (dh)
c, có tam giác ABC cân tại A (gt) => ^ABC = (180 - ^BAC) : 2 (tc)
có AM = AN (câu a) => tam giác AMN cân tại A (đn) => ^ANM = (180 - ^BAC) : 2 (tc)
=> ^ABC = ^ANM mà 2 góc này đồng vị
=> MN // BC (đl)