K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 4 2017

A B C D E M N K

a) Xét \(\Delta ADB\)\(\Delta AEC\) ,có :

AB = AC ( \(\Delta ABC\) cân tại A )

\(\widehat{ABC}=\widehat{ACB}\) ( \(\Delta ABC\) cân tại A )

BD = CE ( gt )

=> \(\Delta ABD=\Delta ACE\left(c.g.c\right)\)

b) Vẽ hình

c) Xét \(\Delta AMD\)\(\Delta ANE\) ,có :
AD = AE ( \(\Delta ABD=\Delta ACE\) )

\(\widehat{MAD}=\widehat{NAE}\) ( \(\Delta ABD=\Delta ACE\) )

\(\widehat{AMD}=\widehat{ANE}=90^0\)

=> \(\Delta AMD=\Delta ANE\) ( cạnh huyền - góc nhọn )

=> AM = AN ( đpcm )

d)MK viết các bước rồi bn tự trình bày nha !

B1 : C/m AK là tia phân giác của góc A )

=> \(\widehat{MAK}=\widehat{NAK}=60^0\)

=> \(\widehat{MKA}=\widehat{NKA}=30^0\)

=> \(\widehat{MAK}=60^0\)

B2 : Tính \(\widehat{B}=\widehat{C}=\dfrac{180^0-120^0}{2}=30^0\)

=> \(\widehat{KDE}=\widehat{KED}=60^0\)

=> \(\Delta DKE\) đều

26 tháng 4 2017

cái bước cc tớ ko hiểu, tại sao => DKE ĐỀU V

15 tháng 5 2018

Câu a  (1,0đ) Chứng minh :ABD = ACE

Xét ABD và ACE :có AB=AC (cạnh bên cân); =(góc đáycân);BD=CE (gt)  (0,25đ)  x3=(0,75đ)  

Vậy ABD = ACE(cgc)                                                    (0,25đ)  

Câu b (0,75đ)  Chứng minh đúng vuông AMD =  vuông ANE vì có AD = AE;

(do ABD =ACE)                                                             (0,5đ)

Kết luận  AMD = ANE và suy ra  AM =AN)                (0,25đ)  

Câu c (0,75đ): Chứng minh đúng vuông BMD = vuông CNE  (cạnh huyền - góc nhọn )(0,25đ)

 Lập luận  chứng minh được rồi suy ra KDE cân tại K (1)(0,25đ)

Từ  lập luận để (2)

Kết hợp (1)và (2) KDE đều )(0,25đ)

16 tháng 5 2018

https://olm.vn/hoi-dap/question/1231127.html

16 tháng 5 2018

a) Xét tam giác ABD và tam giác ACE có:

          AB = AC (Vì tam giác ABC cân tại A)

         \(\widehat{ABC}=\widehat{ACB}\)(vì tam giác ABC cân tại A)

         BD = CE (gt)

Do đó ​tam giác ABD = tam giác ACE(cgc)

b) Ta có: tam giác ABD = tam giác ACE (cmt)

    \(\Rightarrow\)AD = AE (hai cạnh tương ứng) (1)

    \(\Rightarrow\widehat{BAD}=\widehat{CAE}\)(hai góc tương ứng) (2)

Từ (1) và (2) \(\Rightarrow\) tam giác vuông AMD = tam giác vuông ANE (ch-gn) 

     \(\Rightarrow\)AM = AN (hai cạnh tương ứng)

c) Trong tam giác ABC có góc BAC=120 độ

\(\Rightarrow\)Góc ABC = góc ACB = \(\frac{180-120}{2}\)=  30 độ

 Trong tam giác vuông BMD có góc MBD = 30 độ \(\Rightarrow\widehat{MDB}=60\)độ

Tương tự: Ta được, trong tam giác vuông NCE có góc NEC =60 độ

\(\Rightarrow\)\(\widehat{MDB}=\widehat{NEC}\)(=60 độ)

Mặt khác: \(\widehat{MDB}=\widehat{EDK}\left(đđ\right)\)

                \(\widehat{NEC}=\widehat{DEK}\left(đđ\right)\)

\(\Rightarrow\widehat{EDK}=\widehat{DEK}\)(=60 độ)

\(\Rightarrow\widehat{DKE}=180-\left(60\times2\right)=60\)độ

\(\Rightarrow\)Trong tam giác DKE có 3 góc EDK;DEK;DKE cùng bằng 60

  Hay tam giác DKE đều.

         

      

16 tháng 5 2018

a) Xét hai tam giác ABD và ACE ta có

AB = AC (gt)

\(\widehat{ABD}=\widehat{ACE}\left(gt\right)\)

BD = CE (gt)

Do đó: \(\Delta ABD=\Delta ACE\left(c-g-c\right)\)

b) Ta có: \(\Delta ABD=\Delta ACE\)(câu a)

\(=>\hept{\begin{cases}\widehat{BAD}=\widehat{EAC}\\AD=AE\end{cases}}\)(cặp góc và cặp cạnh tương ứng)

Xét hai tam giác vuông AMD và ANE ta có

AD = AE (cmt)

\(\widehat{MAD}=\widehat{EAN}\left(cmt\right)\)

Do đó: \(\Delta AMD=\Delta ANE\left(c.h-g.n\right)\)

=> AM =AN (cặp cạnh tương ứng)

c) Trong \(\Delta ABC\)cân tại A ta có: \(\widehat{ABC}=\widehat{ACB}=\frac{180^o-\widehat{BAC}}{2}=\frac{180^o-120^0}{2}=30^o\)

Trong \(\Delta MDB\)vuông tại M ta có: \(\widehat{BDM}=90^o-\widehat{DBM}=90^o-30^o=60^o\)

Ta lại có: \(\widehat{ABC}=\widehat{ACB}\left(gt\right)\)

=> \(\widehat{MDB}=\widehat{NEC}\)(vì cùng bù với \(\widehat{ABC}\))

mà \(\hept{\begin{cases}\widehat{BDM}=\widehat{KDE}\left(đđ\right)\\\widehat{NEC}=\widehat{DEK}\left(đđ\right)\end{cases}}\)

=> \(\widehat{KDE}=\widehat{KED}=60^o\)(1)

Trong \(\Delta DKE\)có: \(\widehat{KDE}+\widehat{KED}+\widehat{DKE}=180^o\)

                            hay \(60^o+60^o+\widehat{DKE}=180^o\)   

                                    \(120^o+\widehat{DKE}=180^o\)

                                                      \(\widehat{DKE}=180^o-120^o\)

                                                      \(\widehat{DKE}=60^o\)(2)

Từ (1) và (2) => \(\Delta DKE\)là tam giác đều

P/s: k hộ thần :3

                                                     

15 tháng 5 2018

Câu a  (1,0đ) Chứng minh :ABD = ACE

Xét ABD và ACE :có AB=AC (cạnh bên cân); =(góc đáycân);BD=CE (gt)  (0,25đ)  x3=(0,75đ)  

Vậy ABD = ACE(cgc)                                                    (0,25đ)  

Câu b (0,75đ)  Chứng minh đúng vuông AMD =  vuông ANE vì có AD = AE;

(do ABD =ACE)                                                             (0,5đ)

Kết luận  AMD = ANE và suy ra  AM =AN)                (0,25đ)  

Câu c (0,75đ): Chứng minh đúng vuông BMD = vuông CNE  (cạnh huyền - góc nhọn )(0,25đ)

 Lập luận  chứng minh được rồi suy ra KDE cân tại K (1)(0,25đ)

Từ  lập luận để (2)

Kết hợp (1)và (2) KDE đều )(0,25đ)

10 tháng 8 2020

bạn tự vẽ hình nha
a, xét tg BMD và tg CNE có:

         góc BMD=góc CNE( =90đ)          

         BD=CE(gt)
         góc b= góc C(vì tg ABC cân tại A)

=>tg BMD=tg CNE(cạnh huyền_ góc nhọn)

=>BM=CN( 2 cạnh tương ứng)

ta có AM+BM=AB

          AN+CN=AC

mà BM=CN(cmt), AB=AC(vì tg ABC cân tại a)

nên AM=AN

b, có góc MDB=góc EDK( 2 góc đối đỉnh) và góc NEC= góc DEK( 2 góc đối đỉnh)
    mà góc MDB= góc NEC( 2 góc tương ứng của tgBMD=tgCNE)

   =>góc EDK=góc DEK

   => tg DKE cân tại K           (1)

 có tg ABC cân tại A=> B=C=(180đ-120đ)/2= 30đ

xét tg BMD vuông tại M có:

            góc B+ góc MDB=90đ(đl tổng 3 góc trog tg vuông)

      hay 30đ+MDB=90đ

        =>     góc MDB= 90đ-30đ=60đ
  mà góc MDB= góc EDK(cmt)
        => góc EDK=60đ                (2)
Từ (1) và (2) => tg DKE đều


 

15 tháng 5 2018

Câu a  (1,0đ) Chứng minh :ABD = ACE

Xét ABD và ACE :có AB=AC (cạnh bên cân); =(góc đáycân);BD=CE (gt)  (0,25đ)  x3=(0,75đ)  

Vậy ABD = ACE(cgc)                                                    (0,25đ)  

Câu b (0,75đ)  Chứng minh đúng vuông AMD =  vuông ANE vì có AD = AE;

(do ABD =ACE)                                                             (0,5đ)

Kết luận  AMD = ANE và suy ra  AM =AN)                (0,25đ)  

Câu c (0,75đ): Chứng minh đúng vuông BMD = vuông CNE  (cạnh huyền - góc nhọn )(0,25đ)

 Lập luận  chứng minh được rồi suy ra KDE cân tại K (1)(0,25đ)

Từ  lập luận để (2)

Kết hợp (1)và (2) KDE đều )(0,25đ)

26 tháng 3 2019

a,xét tam giác ABD và tam giác ACE có:

              AB=AC(gt)

   vì \(\widehat{ABC}\)=\(\widehat{ACB}\)suy ra \(\widehat{ABD}\)=\(\widehat{ACE}\)

              BD=CE(gt)

\(\Rightarrow\)\(\Delta\)ABD=\(\Delta\)ACE(c.g.c)

b,xét 2 tam giác vuông ADH và AEK có:

                AD=AE(theo câu a)

                \(\widehat{DAH}\)\(\widehat{EAK}\)(theo câu a)

\(\Rightarrow\)\(\Delta\)ADH=\(\Delta\)AEK(CH-GN)

\(\Rightarrow\)DH=EK

c,xét tam giác AHO và tam giác AKO có:

              AH=AK(theo câu b)

              AO cạnh chung

\(\Rightarrow\)\(\Delta\)AHO=\(\Delta\)AKO( cạnh góc vuông-cạnh huyền)

\(\Rightarrow\)\(\widehat{HAO}\)=\(\widehat{KAO}\)

\(\Rightarrow\)AO là phận giác của góc BAC

d,câu này dễ nên bn có thể tự làm tiếp nhé

             

18 tháng 2 2020

a) Vì \(\Delta ABC\) cân tại \(A\left(gt\right)\)

=> \(\left\{{}\begin{matrix}AB=AC\\\widehat{ABC}=\widehat{ACB}\end{matrix}\right.\) (tính chất tam giác cân).

Hay \(\widehat{ABD}=\widehat{ACE}.\)

Xét 2 \(\Delta\) \(ABD\)\(ACE\) có:

\(AB=AC\left(cmt\right)\)

\(\widehat{ABD}=\widehat{ACE}\left(cmt\right)\)

\(BD=CE\left(gt\right)\)

=> \(\Delta ABD=\Delta ACE\left(c-g-c\right).\)

b) Theo câu a) ta có \(\Delta ABD=\Delta ACE.\)

=> \(AD=AE\) (2 cạnh tương ứng).

=> \(\widehat{BAD}=\widehat{CAE}\) (2 góc tương ứng).

Hay \(\widehat{MAD}=\widehat{NAE}.\)

Xét 2 \(\Delta\) vuông \(ADM\)\(AEN\) có:

\(\widehat{AMD}=\widehat{ANE}=90^0\left(gt\right)\)

\(AD=AE\left(cmt\right)\)

\(\widehat{MAD}=\widehat{NAE}\left(cmt\right)\)

=> \(\Delta ADM=\Delta AEN\) (cạnh huyền - góc nhọn).

=> \(AM=AN\) (2 cạnh tương ứng).

c) Câu này mình đang nghĩ nhé.

Chúc bạn học tốt!

18 tháng 2 2020

Cảm ơn bạn