K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Xét ΔBHC vuông tại H và ΔCKB vuông tại K có

CB chung

\(\widehat{BCH}=\widehat{CBK}\)(hai góc ở đáy của ΔABC cân tại A)

Do đó: ΔBHC=ΔCKB(cạnh huyền-góc nhọn)

b) Ta có: ΔBHC=ΔCKB(cmt)

nên HC=KB(hai cạnh tương ứng)

Ta có: AK+KB=AB(K nằm giữa A và B)

AH+HC=AC(H nằm giữa A và C)

mà AB=AC(ΔABC cân tại A)

và KB=HC(cmt)

nên AK=AH

Xét ΔAKH có AK=AH(cmt)

nên ΔAKH cân tại A(Định nghĩa tam giác cân)

c) Ta có: ΔAKH cân tại A(cmt)

nên \(\widehat{AKH}=\dfrac{180^0-\widehat{A}}{2}\)(Số đo của một góc ở đáy trong ΔAKH cân tại A)(1)

Ta có: ΔABC cân tại A(gt)

nên \(\widehat{ABC}=\dfrac{180^0-\widehat{A}}{2}\)(Số đo của một góc ở đáy trong ΔABC cân tại A)(2)

Từ (1) và (2) suy ra \(\widehat{AKH}=\widehat{ABC}\)

mà \(\widehat{AKH}\) và \(\widehat{ABC}\) là hai góc ở vị trí đồng vị

nên HK//BC(Dấu hiệu nhận biết hai đường thẳng song song)

d) Xét ΔABH vuông tại H và ΔACK vuông tại K có

AB=AC(ΔABC cân tại A)

\(\widehat{BAH}\) chung

Do đó: ΔABH=ΔACK(cạnh huyền-góc nhọn)

nên \(\widehat{ABH}=\widehat{ACK}\)(hai góc tương ứng)

hay \(\widehat{KBO}=\widehat{HCO}\)

Xét ΔKBO vuông tại K và ΔHCO vuông tại H có

KB=HC(cmt)

\(\widehat{KBO}=\widehat{HCO}\)(cmt)

Do đó: ΔKBO=ΔHCO(cạnh góc vuông-góc nhọn kề)

nên OB=OC(hai cạnh tương ứng)

Ta có: AB=AC(ΔABC cân tại A)

nên A nằm trên đường trung trực của BC(Tính chất đường trung trực của một đoạn thẳng)(3)

Ta có: OB=OC(cmt)

nên O nằm trên đường trung trực của BC(Tính chất đường trung trực của một đoạn thẳng)(4)

Ta có: MB=MC(M là trung điểm của BC)

nên M nằm trên đường trung trực của BC(Tính chất đường trung trực của một đoạn thẳng)(5)

Từ (3), (4) và (5) suy ra A,O,M thẳng hàng(đpcm)

4 tháng 2 2021

tham khảo nha

27 tháng 2 2022

mọi người giúp mk với ạ. Mk cảm ơn trước nha

a: Xét ΔABH vuông tại H và ΔACK vuông tại K có

AB=AC

\(\widehat{BAH}\) chung

Do đó: ΔABH=ΔACK

Suy ra: AH=AK

b: Xét ΔAKI vuông tại K và ΔAHI vuông tại H có

AI chung

AK=AH

Do đó: ΔAKI=ΔAHI

Suy ra: \(\widehat{KAI}=\widehat{HAI}\)

hay AI là tia phân giác của góc BAC

c: Xét ΔKBC vuông tại K và ΔHCB vuông tại H có

BC chung

KC=HB

Do đó: ΔKBC=ΔHCB

Suy ra: \(\widehat{IBC}=\widehat{ICB}\)

hay ΔIBC cân tại I

d: Xét ΔABC có AK/AB=AH/AC

nên KH//BC

e: Ta có: ΔABC cân tại A

mà AI là đường phân giác

nên AI là đường cao

1) Xét ΔABH vuông tại H và ΔACK vuông tại K có

AB=AC(ΔABC cân tại A)

\(\widehat{BAH}\) chung

Do đó: ΔABH=ΔACK(Cạnh huyền-góc nhọn)

2) Xét ΔBCK vuông tại K và ΔCBH vuông tại H có

BC chung

CK=BH(ΔABH=ΔACK)

Do đó: ΔBCK=ΔCBH(Cạnh huyền-cạnh góc vuông)

Suy ra: \(\widehat{KCB}=\widehat{HBC}\)(hai góc tương ứng)

hay \(\widehat{OBC}=\widehat{OCB}\)

Xét ΔOBC có \(\widehat{OBC}=\widehat{OCB}\)(cmt)

nên ΔOBC cân tại O(Định lí đảo của tam giác cân)

Suy ra: OB=OC

a: Xét ΔAHB vuông tại H và ΔAKC vuông tại K có

AB=AC

góc BAH chung

Do đó: ΔAHB=ΔAKC

b: ΔAHB=ΔAKC

=>AH=AK

c: Xét ΔAKI vuông tại K và ΔAHI vuông tại H co

AI chung

AH=AK

Do đó: ΔAKI=ΔAHI

=>góc KAI=góc HAI

=>AI là phân giác của góc BAC

14 tháng 2 2021

Tgiac ABC cân tại A => AB = AC và góc ABC = ACB

a) Xét tgiac ABH và ACK có:

+ AB = AC

+ chung góc A

+ góc AHB = AKC = 90 độ

=> tgiac ABH = ACK (ch-gn)

=> góc ABH = ACK

Mà góc ABC = ACB

=> ABC - ABH = ACB - ACK

=> góc OBC = OCB

=> tgiac OBC cân tại O

=> đpcm

b) Tgiac OBC cân tại O => OB = OC

Xét tgiac OBK và OCH có:

+ góc OKB = OHC = 90 độ

+ OB = OC

+ góc KBO = HCO (cmt)

=>  tgiac OBK = OCH (ch-gn)

=> đpcm

c) Xét tgiac ABO và ACO có:

+ OB = OC

+ AO chung

+ AB = AC

=> tgiac ABO = ACO (ccc)

=> góc BAO = CAO

=> tia AO là tia pgiac của góc BAC (1)

Xét tgiac ABI và ACI:

+ AI chung

+ AB = AC

+ IB = IC

=> tgiac ABI = ACI (ccc)

=> góc BAI = CAI

=> AI là tia pgiac góc BAC (2)

(1), (2) => A, O, I thẳng hàng (đpcm)

7 tháng 5 2017

22 tháng 12 2023

a: Xét ΔAHB vuông tại H và ΔAKC vuông tại K có

AB=AC

\(\widehat{BAH}\) chung

Do đó: ΔAHB=ΔAKC

=>AH=AK

b: Ta có: ΔAHB=ΔAKC

=>\(\widehat{ABH}=\widehat{ACK}\)

=>\(\widehat{KBI}=\widehat{HCI}\)

Ta có: AK+KB=AB

AH+HC=AC

mà AK=AH và AB=AC

nên KB=HC

Xét ΔIKB vuông tại K và ΔIHC vuông tại H có

KB=HC

\(\widehat{KBI}=\widehat{HCI}\)

Do đó: ΔIKB=ΔIHC

c: ta có: ΔIKB=ΔIHC

=>IB=IC

Xét ΔABI và ΔACI có

AB=AC

BI=CI

AI chung

Do đó: ΔABI=ΔACI

=>\(\widehat{BAI}=\widehat{CAI}\)

=>AI là phân giác của góc BAC

d: Ta có: AB=AC

=>A nằm trên đường trung trực của BC(1)

ta có: IB=IC

=>I nằm trên đường trung trực của BC(2)

ta có: MB=MC

=>M nằm trên đường trung trực của BC(3)

Từ (1),(2),(3) suy ra A,I,M thẳng hàng