Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔBNC và ΔCMB có
NB=MC
\(\widehat{NBC}=\widehat{MCB}\)
BC chung
Do đó; ΔBNC=ΔCMB
b: Sửa đề: Cm ΔANM cân tại A
Xét ΔANM có AN=AM
nên ΔANM cân tại A
a. Ta xét \(\Delta BCNvà\Delta CMB\)
có BC chung
góc B = góc C ( Hai góc ở đáy của tam giác cân)
BN = CM ( BN=\(\frac{1}{2}AB=\frac{1}{2}AC=CM\)
Suy ra tam giác BCN = tam giác CMB ( C-G-C)
b. Ta có tam giác BCN = tam giác CMB
suy ra góc BCN = góc CBM ( hai góc tương ứng)
tam giác BKC có góc KBC= góc KCB nên tam giác BKC cân tại K
c. Xét \(\Delta BKC\)
có BC< KB + KC ( BĐT tam giác) (1)
mà BK = 2.KM, CK = 2.KN mà BK= CK, KM =KN (2)
từ (1) và (2) suy ra BC < KB +KC =4.KM
Vậy BC < 4.KM
C) MN // BC
o l m . v n
a, tam giác ABC cân tại A (gt)
=> AB = AC (Đn)
có M;N lần lượt là trung điểm của AC;AB (gt) => AM = MC = 1/2AC và AN = BN = 1/2BC (tc)
=> AN = AM = BN = CM
xét tam giác NBC và tam giác MCB có : BC chung
^ABC = ^ACB do tam giác ABC cân tại A (Gt)
=> tam giác NBC = tam giác MCB (c-g-c) (1)
b, (1) => ^KBC = ^KCB (đn)
=> tam giác KBC cân tại K (dh)
c, có tam giác ABC cân tại A (gt) => ^ABC = (180 - ^BAC) : 2 (tc)
có AM = AN (câu a) => tam giác AMN cân tại A (đn) => ^ANM = (180 - ^BAC) : 2 (tc)
=> ^ABC = ^ANM mà 2 góc này đồng vị
=> MN // BC (đl)
a) vì tam giác ABC cân tại A
nên AB=AC; \(\widehat{B}=\widehat{C}\)
mà CN và BM là đường trung tuyến
=>BM=NC
=>AN=BN ; AM=CM
Xét \(\Delta BNC\)và \(\Delta CMB\)
có: BC là cạnh chung
BN=CM (gt)
BM=NC (gt)
do đó: \(\Delta BNC=\Delta CMB\)
giải:
a,Xét tam giác BCN và tam giác CBM có
cạnh BC chung, Góc B=góc C(vì Tam giác ABC cân tại A),BN=CN(Vì \(BN=\frac{1}{2}AB=\frac{1}{2}AC=CM\))
=>tam giác BCN=tam giác CBM(c.g.c)
b,ta có :tam giác BCN=tam giác CBM(cm1)
=>góc B1=góc C1( 2 góc tương ứng)
=>tam giác BKC cân tại K
c,Xét tam giác BKC có:
BC<KB+KC (bất đẳng thức tam giác) (1)
mà BK=2KM, CK=2KN, Mà BK=CK, KM=KN (2)
Từ (1) và (2)=>BC<KB+KC=4KM
Vậy BC<4KM (đpcm)
hình bạn k vẽ thì chớ. lại còn yêu cầu cả giả thiết, kết luận. đề thì dài. ai làm nổi??? bây giờ mình k làm giả thiết kết luận thì bạn có **** k? k thì thôi. có thì mình làm
ko cần giả thiết kết luận cũng được bạn làm day du ho mk voi
a) Ta có: ΔABC cân tại A
Nên: AB=AC
Mà: CN là đường trung tuyến => NB=NA
BM là đường trung tuyến => MA=MC
Suy ra: NB=NA=MA=MC
Xét ΔBNC và ΔCMB
Có: BN=CM (cmt)
\(\widehat{B}\)=\(\widehat{C}\)(do ΔABC cân)
BC chung
Suy ra: ΔBNC=ΔCMB (c-g-c)