Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
Gọi N là trung điểm của HC
Xét tam giác ABC cân tại A ta có:
AM là đường trung tuyến (gt)
=> AM là đường cao của tam giác ABC
=> AM _|_ BC tại M
Xét tam giác HMC ta có:
O là trung điểm của Mh (gt)
N là trung điểm của HC ( cách vẽ)
=> ON là đường trung bình của tam giác HMC
=> ON // MC
Mà AM _|_ MC tại M (cmt)
Nên NO _|_ AM
Mặt khác MH _|_ AN tại H (gt) và NO cắt MH tại O (gt)
=> O là trực tâm của tam giác AMN
=> AO _|_ MN
Xét tam giác BHC ta có:
M là trung điểm của BC (gt)
N là trung điểm của HC (cách vẽ)
=> MN là đường trung bình của tam giác BHC
=> MN // BH
Mà AO _|_ MN (cmt)
Nên AO _|_ BH (đpcm)
LLớp 8 chúng tôi mới lớp #4 hóm này njpnnvidynnw này là chử viết gìn dayenws
Bạn tự vẽ hình nhé hình này rất dễ thôi :v
a)Xét tam giác cân ABC có:AM là trung tuyến
`=>` AM là đường cao
`=>AM bot BC`
Xét tam giác ABM và tam giác ACM có:
`AM` chung
`hat{AMB}=hat{AMC}=90^o(CMT)`
`BM=MC`(do m là trung điểm)
`=>Delta ABM=Delta ACM(cgc)`
`b)` Xét tam giác vuông BHM và tam giác vuông CKM ta có:
`BM=CM`(M là trung điểm)
`hat{ABC}=hat{ACB}`(do tam giác ABC cân)
`=>Delta BHM=Delta CKM`(ch-gn)
`=>BH=CK`
a/
\(BN\perp AC;MH\perp AC\) => MH//BN
Xét tg BNC có
MH//BN
MB=MC
=> HN=HC (trong tg đường thẳng // với 1 cạnh và đi qua trung điểm của 1 cạnh thì đi qua trung điểm cạnh còn lại)
Ta có
MH//BN. Xét tg AMH
\(\dfrac{ED}{IM}=\dfrac{EN}{IH}\) (talet)
Mà IM=IH => ED=EN
b/
Xét tg vuông ABN có
\(BN^2=AB^2-AN^2=AC^2-AN^2=\)
\(=AC^2-\left(AC-CN\right)^2=AC^2-\left(AC-2HN\right)^2=\)
\(=AC^2-AC^2+4AC.HN-4HN^2=\)
\(=4HN.\left(AC-HN\right)=4HN\left(AC-HC\right)=\)
\(=4HN.HA\)
Xét tg BCN có
MB=MC; HN=HC => MH là đường trung bình => \(MH=\dfrac{BN}{2}\)
Mà MH=2MI\(\Rightarrow2MI=\dfrac{BN}{2}\Rightarrow BN=4MI\)
Ta có
\(BN^2=4HN.HA\Rightarrow\left(4MI\right)^2=4HN.HA\)
\(\Rightarrow16MI^2=4.HN.HA\Rightarrow MI^2=HN.HA\)
1: Xét tứ giác AHMK có
góc AHM=góc AKM=góc HAK=90 độ
=>AHMK là hình chữ nhật
2:
a: Xét ΔABC có
M là trung điểm của BC
MH//AC
Do đó: H là trung điểm của AB
b: Xét ΔABC có
M là trung điểm của CB
MK//AB
Do đó: K là trung điểm của AC
Xét ΔABC có MK//AB
nên MK/AB=CM/CB=1/2
=>MK=1/2AB=HB
Xét tứ giác BHKM có
BH//KM
BH=KM
Do đó: BHKM là hình bình hành
=>BK cắt HM tại trung điểm của mỗi đường
=>B,E,K thẳng hàng
3:
a: Xét tứ giác ABMD có
AB//DM
AD//BM
Do đó: ABMD là hình bình hành
=>AD=MB=AM
b: Xét tứ giác AMCD có
AM//CD
AM=CD
AD=AM
Do đó: AMCD là hình thoi
dạ cô vẽ dùng em hình
a, xét tứ giác AHMK có
góc MHA=90 độ( MH ⊥ Ab-gt)
góc MKA=90 độ( MK⊥ AC-gt)
góc HAK= 90 độ ( tam giác ABC vuông tại A-gt)
-> AHMK là hcn ( tứ giác có 3 góc vuông là hcn)2). Có : MH vuông góc với AB ( gt )
AC vuông góc với AB (
Δ
ABC vuông tại A)
=> MH//AC
Xét tam giác ABc có
MH//AC( cmt)
M là trung điểm BC (gt)
=> H là trung điểm AB (định lý đường trung bình của tam giác)(đpcm)
. Có: MK vuông góc AC ( gt)
AB vuông góc AC( tam giác ABC vuông tại A )
=> MK//AB
Có:MK//AB(cmt)
M là trung điểm BC ( gt)
=> K là trung điểm AC ( định lý đường trung bình của tam giác )
Có : H là trung điểm AB ( cmt)
=. BH=1/2AB
Xét tam giác ABC có
M là trung điểm BC(cmt)
K là trung điểm AC ( cmt)
=> MK là đưởng trung bình của tam giác ABC( dấu hiệu nhận biết)
=> MK=1/2AB
( tính chất đường trung bình của tam giác)
=> MK//AB(tính chất đường trung bình của tam giác) hay MK//BH
Có MK=1/2AB
BH= 1/2AB
=> MK=BH
Mà MK//BH(cmt)
=> BMKH là hình bình hành
VÌ BMKH là hình bình hành (cmt)
=> Hai đường chéo HM và BK cắt nhau tại trung điểm mỗi đường
Mà E là trung điểm HM ( gt)
=> E là trung điểm BK hay ba điểm B; E; K thẳng hàng(dpcm)
mình tự làm ne chắc do mạng mình bị lỗi bắm nhầm phải
cậu bk lalmf k ạ