K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 9 2017

Bài 1:

Gọi N là trung điểm của HC

Xét tam giác ABC cân tại A ta có:

AM là đường trung tuyến (gt)

=> AM là đường cao của tam giác ABC

=> AM _|_ BC tại M

Xét tam giác HMC ta có:

O là trung điểm của Mh (gt)

N là trung điểm của HC ( cách vẽ)

=> ON là đường trung bình của tam giác HMC

=> ON // MC

Mà AM _|_ MC tại M (cmt)

Nên NO _|_ AM 

Mặt khác MH _|_ AN tại H (gt) và NO cắt MH tại O (gt)

=> O là trực tâm của tam giác AMN

=> AO _|_ MN

Xét tam giác BHC ta có:

M là trung điểm của BC (gt)

N là trung điểm của HC (cách vẽ)

=> MN là đường trung bình của tam giác BHC

=> MN // BH

Mà AO _|_ MN (cmt)

Nên AO _|_ BH (đpcm)

29 tháng 4 2018

LLớp 8 chúng tôi mới lớp #4 hóm này njpnnvidynnw này là chử viết gìn dayenws

26 tháng 6 2021

Bạn tự vẽ hình nhé hình này rất dễ thôi :v

a)Xét tam giác cân ABC có:AM là trung tuyến

`=>` AM là đường cao

`=>AM bot BC`

Xét tam giác ABM và tam giác ACM có:

`AM` chung

`hat{AMB}=hat{AMC}=90^o(CMT)`

`BM=MC`(do m là trung điểm)

`=>Delta ABM=Delta ACM(cgc)`

`b)` Xét tam giác vuông BHM và tam giác vuông CKM ta có:

`BM=CM`(M là trung điểm)

`hat{ABC}=hat{ACB}`(do tam giác ABC cân)

`=>Delta BHM=Delta CKM`(ch-gn)

`=>BH=CK`

4 tháng 10 2016

Mình cũng chưa làm được bài 3. Cậu làm được, chỉ mình với nhé!

28 tháng 8 2023

A B C M H N I E Q K D

a/

\(BN\perp AC;MH\perp AC\) => MH//BN

Xét tg BNC có

MH//BN

MB=MC

=> HN=HC (trong tg đường thẳng // với 1 cạnh và đi qua trung điểm của 1 cạnh thì đi qua trung điểm cạnh còn lại)

Ta có

MH//BN. Xét tg AMH

\(\dfrac{ED}{IM}=\dfrac{EN}{IH}\) (talet)

Mà IM=IH => ED=EN

b/

Xét tg vuông ABN có

\(BN^2=AB^2-AN^2=AC^2-AN^2=\)

\(=AC^2-\left(AC-CN\right)^2=AC^2-\left(AC-2HN\right)^2=\)

\(=AC^2-AC^2+4AC.HN-4HN^2=\)

\(=4HN.\left(AC-HN\right)=4HN\left(AC-HC\right)=\)

\(=4HN.HA\)

Xét tg BCN có

MB=MC; HN=HC => MH là đường trung bình => \(MH=\dfrac{BN}{2}\)

Mà MH=2MI\(\Rightarrow2MI=\dfrac{BN}{2}\Rightarrow BN=4MI\)

Ta có

\(BN^2=4HN.HA\Rightarrow\left(4MI\right)^2=4HN.HA\)

\(\Rightarrow16MI^2=4.HN.HA\Rightarrow MI^2=HN.HA\)

 

 

 

1: Xét tứ giác AHMK có

góc AHM=góc AKM=góc HAK=90 độ

=>AHMK là hình chữ nhật

2: 

a: Xét ΔABC có

M là trung điểm của BC

MH//AC

Do đó: H là trung điểm của AB

b: Xét ΔABC có

M là trung điểm của CB

MK//AB

Do đó: K là trung điểm của AC

Xét ΔABC có MK//AB

nên MK/AB=CM/CB=1/2

=>MK=1/2AB=HB

Xét tứ giác BHKM có

BH//KM

BH=KM

Do đó: BHKM là hình bình hành

=>BK cắt HM tại trung điểm của mỗi đường

=>B,E,K thẳng hàng

3:

a: Xét tứ giác ABMD có

AB//DM

AD//BM

Do đó: ABMD là hình bình hành

=>AD=MB=AM

b: Xét tứ giác AMCD có

AM//CD

AM=CD

AD=AM

Do đó: AMCD là hình thoi

4 tháng 9 2023

Cảm ơn bạn nhiều nha

dạ cô vẽ dùng em hình

a, xét tứ giác AHMK có

góc MHA=90 độ( MH ⊥ Ab-gt)

góc MKA=90 độ( MK⊥ AC-gt)

góc HAK= 90 độ ( tam giác ABC vuông tại A-gt)

-> AHMK là hcn ( tứ giác có 3 góc vuông là hcn)2). Có : MH vuông góc với AB ( gt )

              AC vuông góc với AB ( 
Δ
ABC vuông tại A)

=> MH//AC 

Xét tam giác ABc có

MH//AC( cmt)

M là trung điểm BC (gt)

=> H là trung điểm AB (định lý đường trung bình của tam giác)(đpcm)
. Có: MK vuông góc AC ( gt)

AB vuông góc AC( tam giác ABC vuông tại A )

=> MK//AB

Có:MK//AB(cmt)

M là trung điểm BC ( gt)

=> K là trung điểm AC ( định lý đường trung bình của tam giác )

Có : H là trung điểm AB ( cmt)

=. BH=1/2AB

Xét tam giác ABC có

M là trung điểm BC(cmt)

K là trung điểm AC ( cmt)

=> MK là đưởng trung bình của tam giác ABC( dấu hiệu nhận biết)

=> MK=1/2AB

( tính chất đường trung bình của tam giác)

=> MK//AB(tính chất đường trung bình của tam giác) hay MK//BH

Có MK=1/2AB

BH= 1/2AB

=> MK=BH

Mà MK//BH(cmt)

=> BMKH là hình bình hành

VÌ BMKH là hình bình hành (cmt)

=> Hai đường chéo HM và BK cắt nhau tại trung điểm mỗi đường 

Mà E là trung điểm HM ( gt)

=> E là trung điểm BK hay ba điểm B; E; K thẳng hàng(dpcm)

mình tự làm ne chắc do mạng mình bị lỗi bắm nhầm phải