Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tự vẽ hình nhé
a) Gọi giao điểm cùa GD và BC là O
=> OB = OC (do tam giác BAC cân tại A và AD là đường cao)
Tứ giác BGCD: (chỗ này sử dụng dấu hiệu 2 đường chéo vuông góc với nhau và cắt nhau tại trung điểm mỗi đường)
=> tứ giác BGCD là hình thoi
b) Để BGCD là hình vuông thì BGC^ = 90o <=> BM _|_ CN
Vậy BGCD là hình vuông <=> tam giác ABC có 2 đường trung tuyến còn lại vuông góc với nhau
bài nhà cô loan à việt mai chữa bài không cần làm đâu
MK dang thac mac tai sao mk lai co the lam ging het bn 100% ?
* Tam giác ABC có hai đường trung tuyến BM và CN cắt nhau tại G
Suy ra: G là trọng tâm của ∆ ABC .
⇒ GB = 2GM (tính chất đường trung tuyến)
GC = 2GN (tính chất đường trung tuyến)
Điểm D đối xứng với điểm G qua điểm M
⇒ MG = MD hay GD = 2GM
Suy ra: GB = GD (l)
Điểm E đối xứng với điểm G qua điểm N
⇒ NG = NE hay GE = 2GN
Suy ra: GC = GE (2)
Từ (1) và (2) suy ra tứ giác BCDE là hình bình hành (vì có hai đường chéo cắt nhau tại trung điểm mỗi đường)
Xét ∆ BCM và ∆ CBN, có: BC cạnh chung
∠ (BCM) = ∠ (CBN) (tính chất tam giác cân)
CM = BN (vì AB = AC)
Suy ra: ∆ BCM = ∆ CBN (c.g.c)
⇒ ∠ (MBC) = ∠ (NCB) ⇒ ∆ GBC cân tại G ⇒ GB = GC ⇒ BD = CE
Hình bình hành BCDE có hai đường chéo bằng nhau nên nó là hình chữ nhật.