K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Tam giác ABC cân nên hai góc đáy bằng nhau : Góc ACB = Góc ABC 
Ta lại có : Góc ABM = 180° - Góc ABC , Góc ACN = 180° - Góc ACB 
Vậy Góc ABM = Góc ACN 
Xét hai tam giác ABM và CAN , ta có : 
AB = AC (gt) 
Góc ABM = Góc ACN (cmt) 
BM = CN (gt) 
=> Tam giác ABM = tam giác CAN => AM = AN 
Vậy tam giác AMN là tam giác cân tại A 
b) Vì tam giác AMN cân => Góc AMB = Góc ANC 
Xét tam giác MHB và tam giác CKN 
Ta có : Góc MHB = Góc CKN ( Góc vuông ) 
Góc AMB = Góc ANC (cmt) 
MB = CN (cmt) 
=> tam giác MHB = tam giác NKC (g-c-g) 
=> BH = CK 
c) làm tương tự câu b 
d) Tam giác ABM = Tam giác CKN => Góc HBM = Góc KCN 
Góc CBO = Góc HBM và Góc KCN = Góc BCO ( đối đỉnh ) 
=> OBC là tam giác cân tại O 
e) Khi BAC = 60° => Tam giác ABC đều 
ta suy ra BM = AB => Tam giác ABM cân đỉnh B . Ta có Góc AMB = \(\frac{1}{2}\) ABC = \(\frac{1}{2}\) . 60 = 30° 
Làm tương tự cho góc kia thì ANM = 30° 
Góc  = 180 - 30° - 30° = 120° 
Góc KCN = Góc BCO =60° 
bn tham khảo!

bn thiếu đề bài : 

Cho tam giác ABC cân tại A. Trên tia đối của tia BC lấy điểm M, trên tia đối của tia CB lấy điểm N sao cho BM = CN

a) Chứng minh rằng tam giác AMN là tam giác cân

b) Kẻ BH vuông góc với AM ( H thuộc AM ). Kẻ CK vuông góc với AN ( K thuộc AN ). Chứng minh rằng BH = CK

c) Chứng minh rằng AH = AK

d) Gọi O là giao điểm của BH và CK. Tam giác OBC là tam giác gì? Vì sao?

e) Khi góc BAC = 60 độ và BM = CN = BC, hãy tính số đo các góc của tam giác AMN và xác định dạng của tam giác OBC.

Xét ΔBAM và ΔCAN có 

AB=AC

\(\widehat{ABM}=\widehat{ACN}\)

BM=CN

DO dó: ΔBAM=ΔCAN

Suy ra: AM=AN

hay ΔAMN cân tại A

16 tháng 2 2017

Giải bài 70 trang 141 Toán 7 Tập 1 | Giải bài tập Toán 7Giải bài 70 trang 141 Toán 7 Tập 1 | Giải bài tập Toán 7

ΔABC cân tại A suy ra Giải bài 70 trang 141 Toán 7 Tập 1 | Giải bài tập Toán 7

Ta lại có :

Giải bài 70 trang 141 Toán 7 Tập 1 | Giải bài tập Toán 7

- ΔABM và ΔACN có

      AB = AC (Do ΔABC cân tại A).

      Giải bài 70 trang 141 Toán 7 Tập 1 | Giải bài tập Toán 7

      BM = CN(gt)

⇒ ΔABM = ΔACN (c.g.c)

⇒ AM = AN (hai cạnh tương ứng) ⇒ ΔAMN cân tại A.

27 tháng 2 2015

Từ đỉnh A kẻ đường cao AH (H thuộc BC) (1)

Ta có : tam giác ABC cân tại A (gt) (2)

Từ(1) và(2)=> HB=HC(=1/2 BC) (3)

Lại có: BM=CN (gt) (4)

M nằm trên tia đối của tia BC, N nằm trên tia đối của tia CB => M,B,C.N thẳng hàng (5)

Từ (3)và (4)=>HB+BM=HC+CN (6)

Từ  (5) và (6)=>AH vừa là đường cao, vừa là đường trung tuyến trong tam giác AMN

=> Tam giác AMN cân tại A (đpcm)

 

3 tháng 6 2019

Theo câu b ta có ΔBHM = ΔCKN ⇒ HM = KN (hai cạnh tương ứng)

Mà AM = AN ⇒ AM –MH = AK – KN hay AH = AK.

4 tháng 3 2021
answer-reply-imageBn tham khảo nhé!  
4 tháng 3 2021

Mn giúp mik với;-;

14 tháng 12 2018

Xét ΔBHM vuông tại H và ΔCKN vuông tại K có:

      BM = CN (gt)

      Giải bài 70 trang 141 Toán 7 Tập 1 | Giải bài tập Toán 7

⇒ ΔBHM = ΔCKN (cạnh huyền – góc nhọn)

⇒ BH = CK (hai cạnh tương ứng)

a: Xét ΔABM và ΔACN có

AB=AC
\(\widehat{ABM}=\widehat{ACN}\)

BM=CN

Do đó: ΔABM=ΔACN

Suy ra: AM=AN

hay ΔAMN cân tại A

b: Xét ΔAHB vuông tại H và ΔAKC vuông tại K có

AB=AC

\(\widehat{HAB}=\widehat{KAC}\)

Do đó: ΔAHB=ΔAKC

Suy ra: BH=CK

c: Ta có: ΔAHB=ΔAKC

nên AH=AK

21 tháng 1 2022

seo nói cj Lam như vậy

a) Ta có: \(\widehat{ABM}+\widehat{ABC}=180^0\)(hai góc kề bù)

\(\widehat{ACN}+\widehat{ACB}=180^0\)(hai góc kề bù)

mà \(\widehat{ABC}=\widehat{ACB}\)(hai góc ở đáy của ΔABC cân tại A)

nên \(\widehat{ABM}=\widehat{ACN}\)

Xét ΔABM và ΔACN có 

AB=AC(ΔABC cân tại A)

\(\widehat{ABM}=\widehat{ACN}\)(cmt)

BM=CN(gt)

Do đó: ΔABM=ΔACN(c-g-c)

Suy ra: AM=AN(hai cạnh tương ứng)

Xét ΔAMN có AM=AN(cmt)

nên ΔAMN cân tại A(Định nghĩa tam giác cân)

b) Xét ΔHBM vuông tại H và ΔKCN vuông tại K có

BM=CN(gt)

\(\widehat{HMB}=\widehat{KNC}\)(hai góc ở đáy trong ΔAMN cân tại A)

Do đó: ΔHBM=ΔKCN(cạnh huyền-góc nhọn)

Suy ra: BH=CK(hai cạnh tương ứng)

c) Ta có: ΔHBM=ΔKCN(cmt)

nên HM=KN(hai cạnh tương ứng)

Ta có: AH+HM=AM(H nằm giữa A và M)

AK+KN=AN(K nằm giữa A và N)

mà AM=AN(cmt)

và HM=KN(cmt)

nên AH=AK(đpcm)

d) Ta có: ΔHBM=ΔKCN(cmt)

nên \(\widehat{HBM}=\widehat{KCN}\)(hai góc tương ứng)

mà \(\widehat{OBC}=\widehat{HBM}\)(hai góc đối đỉnh)

và \(\widehat{OCB}=\widehat{KCN}\)(hai góc đối đỉnh)

nên \(\widehat{OBC}=\widehat{OCB}\)

Xét ΔOBC có \(\widehat{OBC}=\widehat{OCB}\)(cmt)

nên ΔOBC cân tại O(Định lí đảo của tam giác cân)