K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 7 2018

Bạn tự vẽ hình nhé ^^

1. ta có AC=CM ; BC=CE => tứ giác ABME là hình bình hành ( hai đường chéo cắt nhau tại trung điểm của mỗi đường)

2. Ta có ME=AB

mà AB=AC=CM => CM=ME (=AB)

=> tam giác MEC  cân tại M

3.  Xét tam giác AMN có 

(1) AB=BN ; AC=CM => BC // MN (đường thẳng đi qua trung điểm của hai cạnh trong một tam giác sẽ song song với cạnh còn lại. Đường TB của tam giác) => BCMN là hình thang

(2) Ta có BN=CM (g.thiết) 

từ (1) và (2) => tứ giác BCMN là hình thang cân (vì có hai cạnh bên là BN và CM bằng nhau)

4. Xét tam giác BCM và BNC có 

CB: chung

BM=CN (hai đg chéo hình thang cân) 

BN=CM (giả thiết)

=> tam giác BCM=BNC

=> Góc MBC=góc BCN

mà góc FCE =gócBCN (đối đỉnh)

       gócMBC= FEC (so le  trong)

=.> góc FEC= FCE

=>tam giác EFC cân tại F

=> FE=FC (1)

theo CM ý b) ta có ME=MC (2)

từ 1 và 2 suy ra FM là đường trung trực của EC => FM vuông góc với  EC => FM vuông goc với MN tại M

Mà MN//EC

=> tam giác MNF vuông tại M

6 tháng 2 2019

a)xét ΔACB và ΔMCE,ta có:

AC = CM(gt)

EC = CB(gt)

^ECM = ^ BCA(2 góc đối đỉnh)

=> ΔABC = ΔMCE(c.g.c)

nên EM=AB(2 cạnh tương ứng) (1)

^CEM=^CBA(2 góc tương ứng)

nên : EM//AB ( 2 góc này ở vị trí so le trong) (2)

xét tứ giác ABME , ta có :

EM//AB (cmt)

EM=AB (cmt)

=> tứ giác ABME là hình bình hành

cách 2 :

tứ giác ABME, ta có :

BE cắt AM tại C

CA = CM (gt)

CE = CB (gt)

suy ra : tứ giác ABME là hình bình hành.

b)xét Δ MEC,ta có:

AB=ME (cmt)

AB=AC (Δ ABC cân tại A)

AC=MC (gt)

suy ra : MC=ME

nên : Δ MEC cân tại M.

c)Ta có EM=AB mà AB=BN(N là đối xứng của điểm A qua B)

suy ra EM=BN(1)

EM//AB(cmt) mà A thuộc BN(gt)

nên EM//BN(2)

từ (1) và (2), suy ra :tứ giác EBNM là hình bình hành

nên : EB // MN

hay : CB // MN (C thuộc EB)

=> tứ giác CBNM là hình thang

ta lại có:

^MNB=^CBA(2 góc đồng vị)

^CMN=^ACB (đồng vị)

mà ^CBA=^ACB (tam giác ABC cân tại A)

suy ra:^MNB=^CMN

nên : hình thang CBNM là hình thang cân

d)ta có :

xét ΔMBC và ΔNCB, ta có :

MC = NB ; MB = NC (CBNM là hình thang cân )

BC cạnh chung.

=> ΔMBC = ΔNCB (c – c – c)

=> ^B1 = ^C1

Mà : ^B1 = ^E1 (so le trong)

^C1 = ^C2 (đối đỉnh)

=> ^E1 = ^C2 => ΔEFC cân tại F => FE = FC

Xét đoạn EC, ta có :

FE = FC (cmt)

ME = MC (cmt)

=> FM là đường trung trực đoạn EC

=>FM _|_ EC

Mặt khác : EC // MN

=> FM _|_ MN tại M

Vậy : D MNF vuông tại M.

6 tháng 2 2019

a. ta có AC=CM ; BC=CE => tứ giác ABME là hình bình hành ( hai đường chéo cắt nhau tại trung điểm của mỗi đường)

b. Ta có ME=AB

mà AB=AC=CM => CM=ME (=AB)

=> tam giác MEC cân tại M

c. Xét tam giác AMN có

(1) AB=BN ; AC=CM => BC // MN (đường thẳng đi qua trung điểm của hai cạnh trong một tam giác sẽ song song với cạnh còn lại. Đường TB của tam giác) => BCMN là hình thang

(2) Ta có BN=CM (g.thiết)

từ (1) và (2) => tứ giác BCMN là hình thang cân (vì có hai cạnh bên là BN và CM bằng nhau)

a: Xét tứ giác AMCK có

I là trung điểm chung của AC và MK

góc AMC=90 độ

=>AMCK là hình chữ nhật

b: Xet tứ giác ABMK có

AK//MB

AK=MB

=>ABMK là hình bình hành

c; Xét tứ giác ABEC có

M là trung điểm chung của AE và BC

AB=AC

=>ABEC là hình thoi

11 tháng 7 2023

a) Xét ∆CMA và ∆BMD:

Góc CMA= góc BMD (đối đỉnh)

MA=MD (gt)

MC=MB (M là trung điểm BC)

=> ∆CMA=∆BMD(c.g.c)

=> góc CAM = góc BDM và CA=DB

Mà 2 góc CAM và góc BDM nằm ở vị trí so lo trong nên CA//DB

=> CABD là hình bình hành

Lại có góc CAB = 90 độ (gt)

=> ACDB là hình chữ nhật

b) Vì E là điểm đối xứng của C qua A nên EAB=90độ=DBA

Mà 2 góc này ở bị trí so le trong nên AE//DB

Lại có AE=BD(=CA)

=> AEBD là hình bình hành

28 tháng 12 2020

a)

Ta có: MB=MF(gt)

mà F,B,M thẳng hàng

nên M là trung điểm của BF

Xét tứ giác ABCF có 

M là trung điểm của đường chéo AC(gt)

M là trung điểm của đường chéo BF(cmt)

Do đó: ABCF là hình bình hành(Dấu hiệu nhận biết hình bình hành)

b) Ta có: ABCF là hình bình hành(cmt)

nên AF//BC(Hai cạnh đối trong hình bình hành ABCF)

hay AD//CE

Ta có: ΔABC vuông tại A(gt)

mà AE là đường trung tuyến ứng với cạnh BC(E là trung điểm của BC)

nên \(AE=\dfrac{BC}{2}\)(Định lí 1 về áp dụng hình chữ nhật vào tam giác vuông)

mà \(CE=\dfrac{BC}{2}\)(E là trung điểm của BC)

nên AE=CE

Xét tứ giác AECD có 

AD//CE(cmt)

AD=CE(cmt)

Do đó: AECD là hình bình hành(Dấu hiệu nhận biết hình bình hành)

Hình bình hành AECD có AE=CE(cmt)

nên AECD là hình thoi(Dấu hiệu nhận biết hình thoi)

28 tháng 12 2020

C,

kẻ MN

Xét tam giác ABC có

N là trung điểm AB ( Gt)

M là trung điểm AC( gt)

-> MN là đg trung bình tam giác ABC

-> MN song song BC

Ta có MN song song BC

   mà BC ⊥ BI ( gt)

->    Mn ⊥BI hay Mn là đg cao

Xét tam giác BIM có

BA là đg cao do( tam giác ABC vuông tại A- gt)

MN là đg cao ( cmt)

-> N là trực tâm tam giác BIA

-> IN là đg cao thứ 3 trong tam giác BIM hay IN ⊥ BM( đpcm)

LIke nha bnoaoa

15 tháng 12 2014

Hình bạn có thể tự vẽ nha

 a)  Tứ giác AMCK là hình gì?Vì sao?

M,K đối xứng nhau qua I

=> I là trung điểm của MK (1)

I là trung điểm của AC (gt)(2)

(1)(2)=> AMCK là hình bình hành (3)

Tam giác ABC cân tại A có: AM là trung tuyến (gt)

=> AM vừa là trung tuyến vừa là đường cao (t/c)

=>AM vuông góc với BC

=> Góc BMC=90(4)

(3)(4)=> AMCK là hình chữ nhật(dhnb)

b) C/m ABEC là hình thoi:

AM=ME(gt)(5)

 M nằm giữa A và E(6)

(5)(6)=>M là trung điểm AE(7)

M là trung điểm BC(8)

(7)(8)=> ABEC là hình bình hành(9)

AM vuông góc với BC,M thuộc AE=>AE vuông góc với BC(10)

(9)(10)=> ABEC là hình thoi (dhnb)