Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn tự vẽ hình nhé ^^
1. ta có AC=CM ; BC=CE => tứ giác ABME là hình bình hành ( hai đường chéo cắt nhau tại trung điểm của mỗi đường)
2. Ta có ME=AB
mà AB=AC=CM => CM=ME (=AB)
=> tam giác MEC cân tại M
3. Xét tam giác AMN có
(1) AB=BN ; AC=CM => BC // MN (đường thẳng đi qua trung điểm của hai cạnh trong một tam giác sẽ song song với cạnh còn lại. Đường TB của tam giác) => BCMN là hình thang
(2) Ta có BN=CM (g.thiết)
từ (1) và (2) => tứ giác BCMN là hình thang cân (vì có hai cạnh bên là BN và CM bằng nhau)
4. Xét tam giác BCM và BNC có
CB: chung
BM=CN (hai đg chéo hình thang cân)
BN=CM (giả thiết)
=> tam giác BCM=BNC
=> Góc MBC=góc BCN
mà góc FCE =gócBCN (đối đỉnh)
gócMBC= FEC (so le trong)
=.> góc FEC= FCE
=>tam giác EFC cân tại F
=> FE=FC (1)
theo CM ý b) ta có ME=MC (2)
từ 1 và 2 suy ra FM là đường trung trực của EC => FM vuông góc với EC => FM vuông goc với MN tại M
Mà MN//EC
=> tam giác MNF vuông tại M
a)xét ΔACB và ΔMCE,ta có:
AC = CM(gt)
EC = CB(gt)
^ECM = ^ BCA(2 góc đối đỉnh)
=> ΔABC = ΔMCE(c.g.c)
nên EM=AB(2 cạnh tương ứng) (1)
^CEM=^CBA(2 góc tương ứng)
nên : EM//AB ( 2 góc này ở vị trí so le trong) (2)
xét tứ giác ABME , ta có :
EM//AB (cmt)
EM=AB (cmt)
=> tứ giác ABME là hình bình hành
cách 2 :
tứ giác ABME, ta có :
BE cắt AM tại C
CA = CM (gt)
CE = CB (gt)
suy ra : tứ giác ABME là hình bình hành.
b)xét Δ MEC,ta có:
AB=ME (cmt)
AB=AC (Δ ABC cân tại A)
AC=MC (gt)
suy ra : MC=ME
nên : Δ MEC cân tại M.
c)Ta có EM=AB mà AB=BN(N là đối xứng của điểm A qua B)
suy ra EM=BN(1)
EM//AB(cmt) mà A thuộc BN(gt)
nên EM//BN(2)
từ (1) và (2), suy ra :tứ giác EBNM là hình bình hành
nên : EB // MN
hay : CB // MN (C thuộc EB)
=> tứ giác CBNM là hình thang
ta lại có:
^MNB=^CBA(2 góc đồng vị)
^CMN=^ACB (đồng vị)
mà ^CBA=^ACB (tam giác ABC cân tại A)
suy ra:^MNB=^CMN
nên : hình thang CBNM là hình thang cân
d)ta có :
xét ΔMBC và ΔNCB, ta có :
MC = NB ; MB = NC (CBNM là hình thang cân )
BC cạnh chung.
=> ΔMBC = ΔNCB (c – c – c)
=> ^B1 = ^C1
Mà : ^B1 = ^E1 (so le trong)
^C1 = ^C2 (đối đỉnh)
=> ^E1 = ^C2 => ΔEFC cân tại F => FE = FC
Xét đoạn EC, ta có :
FE = FC (cmt)
ME = MC (cmt)
=> FM là đường trung trực đoạn EC
=>FM _|_ EC
Mặt khác : EC // MN
=> FM _|_ MN tại M
Vậy : D MNF vuông tại M.
a. ta có AC=CM ; BC=CE => tứ giác ABME là hình bình hành ( hai đường chéo cắt nhau tại trung điểm của mỗi đường)
b. Ta có ME=AB
mà AB=AC=CM => CM=ME (=AB)
=> tam giác MEC cân tại M
c. Xét tam giác AMN có
(1) AB=BN ; AC=CM => BC // MN (đường thẳng đi qua trung điểm của hai cạnh trong một tam giác sẽ song song với cạnh còn lại. Đường TB của tam giác) => BCMN là hình thang
(2) Ta có BN=CM (g.thiết)
từ (1) và (2) => tứ giác BCMN là hình thang cân (vì có hai cạnh bên là BN và CM bằng nhau)
a: Xét tứ giác AMCK có
I là trung điểm chung của AC và MK
góc AMC=90 độ
=>AMCK là hình chữ nhật
b: Xet tứ giác ABMK có
AK//MB
AK=MB
=>ABMK là hình bình hành
c; Xét tứ giác ABEC có
M là trung điểm chung của AE và BC
AB=AC
=>ABEC là hình thoi
a) Xét ∆CMA và ∆BMD:
Góc CMA= góc BMD (đối đỉnh)
MA=MD (gt)
MC=MB (M là trung điểm BC)
=> ∆CMA=∆BMD(c.g.c)
=> góc CAM = góc BDM và CA=DB
Mà 2 góc CAM và góc BDM nằm ở vị trí so lo trong nên CA//DB
=> CABD là hình bình hành
Lại có góc CAB = 90 độ (gt)
=> ACDB là hình chữ nhật
b) Vì E là điểm đối xứng của C qua A nên EAB=90độ=DBA
Mà 2 góc này ở bị trí so le trong nên AE//DB
Lại có AE=BD(=CA)
=> AEBD là hình bình hành
a)
Ta có: MB=MF(gt)
mà F,B,M thẳng hàng
nên M là trung điểm của BF
Xét tứ giác ABCF có
M là trung điểm của đường chéo AC(gt)
M là trung điểm của đường chéo BF(cmt)
Do đó: ABCF là hình bình hành(Dấu hiệu nhận biết hình bình hành)
b) Ta có: ABCF là hình bình hành(cmt)
nên AF//BC(Hai cạnh đối trong hình bình hành ABCF)
hay AD//CE
Ta có: ΔABC vuông tại A(gt)
mà AE là đường trung tuyến ứng với cạnh BC(E là trung điểm của BC)
nên \(AE=\dfrac{BC}{2}\)(Định lí 1 về áp dụng hình chữ nhật vào tam giác vuông)
mà \(CE=\dfrac{BC}{2}\)(E là trung điểm của BC)
nên AE=CE
Xét tứ giác AECD có
AD//CE(cmt)
AD=CE(cmt)
Do đó: AECD là hình bình hành(Dấu hiệu nhận biết hình bình hành)
Hình bình hành AECD có AE=CE(cmt)
nên AECD là hình thoi(Dấu hiệu nhận biết hình thoi)
C,
kẻ MN
Xét tam giác ABC có
N là trung điểm AB ( Gt)
M là trung điểm AC( gt)
-> MN là đg trung bình tam giác ABC
-> MN song song BC
Ta có MN song song BC
mà BC ⊥ BI ( gt)
-> Mn ⊥BI hay Mn là đg cao
Xét tam giác BIM có
BA là đg cao do( tam giác ABC vuông tại A- gt)
MN là đg cao ( cmt)
-> N là trực tâm tam giác BIA
-> IN là đg cao thứ 3 trong tam giác BIM hay IN ⊥ BM( đpcm)
LIke nha bn
Hình bạn có thể tự vẽ nha
a) Tứ giác AMCK là hình gì?Vì sao?
M,K đối xứng nhau qua I
=> I là trung điểm của MK (1)
I là trung điểm của AC (gt)(2)
(1)(2)=> AMCK là hình bình hành (3)
Tam giác ABC cân tại A có: AM là trung tuyến (gt)
=> AM vừa là trung tuyến vừa là đường cao (t/c)
=>AM vuông góc với BC
=> Góc BMC=90(4)
(3)(4)=> AMCK là hình chữ nhật(dhnb)
b) C/m ABEC là hình thoi:
AM=ME(gt)(5)
M nằm giữa A và E(6)
(5)(6)=>M là trung điểm AE(7)
M là trung điểm BC(8)
(7)(8)=> ABEC là hình bình hành(9)
AM vuông góc với BC,M thuộc AE=>AE vuông góc với BC(10)
(9)(10)=> ABEC là hình thoi (dhnb)