Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
xét tam giác ABM và tam giác ACN có: AB=AC(gt); BM=CN(gt); góc ABM= góc ACN(cùng kề bù vs góc ABC)
suy ra tam giác ABM=tam giác ACN(c.g.c)
suy ra AM=AN
suy ra tam giác AMN cân tại A
b, xét tam giác ABH và tam giác ACK có: góc AHB= goác AKC =90 độ; AB=AC(gt); góc HAB= góc KAC ( do tam giác AMB= tam giác ANC)
suy ra tam giác AHB= tam giác AKC(ch-gn)
suy ra BH=CK
xét ΔABH và ΔMBH có:
\(\widehat{HMB}\)=\(\widehat{HAB}\)=90o
BH là cạnh chung
\(\widehat{MBH}\)=\(\widehat{ABH}\)(BH la phân giác của \(\widehat{MBA}\))
⇒ΔABH=ΔMBH(cạnh huyền góc nhọn)
⇒BM=AB(2 cạnh tương ứng)
⇒ΔABM cân tại B
⇒\(\widehat{ABM}\)=\(\widehat{MAB}\)
gọi I là giao điểm của AM và BH
xét ΔMBI và ΔABI có
AB=BM(ΔABH=ΔMBH)
\(\widehat{MBH}\)=\(\widehat{ABH}\)(BH là phân giác của \(\widehat{MBA}\))
\(\widehat{ABM}\)=\(\widehat{MAB}\)(chứng minh trên)
⇒ΔMBI=ΔABI (g-c-g)
⇒\(\widehat{MIB}\)=\(\widehat{AIB}\)(2 góc tương ứng)(1)
Mà \(\widehat{MIB}\)+\(\widehat{AIB}\)=180o(2 góc kề bù)(2)
Từ (1) và (2) ⇒\(\widehat{MIB}\)=\(\widehat{AIB}\)=\(\dfrac{180^o}{2}\)=90o
⇒BH⊥AM (Điều phải chứng minh)
xét ΔCMH và ΔNAH có:
\(\widehat{CMH}\)=\(\widehat{HAN}\)=90o
\(\widehat{CHM}\)=\(\widehat{NHA}\)(2 góc đối đỉnh)
AH=HM(ΔABH=ΔMBH)
⇒ΔCMH=ΔNAH(g-c-g)
⇒HC=HN(2 cạnh tương ứng)
⇒ΔCHN cân tại H
\(\widehat{NCH}\)=\(\widehat{CNH}\)
vì ΔABH=ΔMBH
⇒AH=HM(2 cạnh tương ứng)
⇒ΔAHM cân tại H
⇒\(\widehat{HMA}\)=\(\widehat{HAM}\)
xét ΔNHC và ΔMHA có
\(\widehat{MHA}\)=\(\widehat{CHN}\)(2 góc đối đỉnh)
⇒\(\widehat{HMA}\)+\(\widehat{HAM}\)=\(\widehat{NCH}\)+\(\widehat{CNH}\)
Mà \(\widehat{HMA}\)=\(\widehat{HAM}\)(chứng minh trên)và\(\widehat{NCH}\)=\(\widehat{CNH}\)(chứng minh trên)
⇒\(\widehat{HMA}\)=\(\widehat{NCH}\)
⇒AM // CN (điều phải chứng minh)
a) \(\Delta ABC\)cân tại \(A\)
\(\Rightarrow\)\(\widehat{ABC}=\widehat{ACB}\) ; \(AB=AC\)
mà \(\widehat{ABC}+\widehat{ABM}=\widehat{ACB}+\widehat{ACN}=180^0\) (kề bù)
\(\Rightarrow\)\(\widehat{ABM}=\widehat{ACN}\)
Xét: \(\Delta ABM\)và \(\Delta ACN\)có:
\(AB=AC\)(cmt)
\(\widehat{ABM}=\widehat{ACN}\)(cmt)
\(BM=CN\)(gt)
suy ra: \(\Delta ABM=\Delta ACN\)(c.g.c)
\(\Rightarrow\)\(AM=AN\)(cạnh tương ứng)
\(\Rightarrow\)\(\Delta AMN\)cân tại \(A\)