K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 1 2022

a/ 

Ta có

\(\widehat{ABC}=\widehat{ACB}\) (2 góc ở đáy của tg cân ABC) (1)

\(\widehat{ABM}+\widehat{ABC}=\widehat{ACN}+\widehat{ACB}=180^o\)(2)

Từ (1) và (2) \(\Rightarrow\widehat{ABM}=\widehat{ACN}\)

Xét \(\Delta ABM\) và \(\Delta ACN\) có

AB=AC (cạnh bên của tg cân ABC)

BM=CN (gt)

\(\widehat{ABM}=\widehat{ACN}\left(cmt\right)\)

\(\Rightarrow\Delta ABM=\Delta ACN\left(c.g.c\right)\Rightarrow AM=AN\Rightarrow\Delta AMN\)cân tại A

b/

Xét tg vuông BME và tg vuông CNF có

\(\widehat{ABM}=\widehat{ACN}\left(cmt\right)\Rightarrow\widehat{AMN}=\widehat{ANM}\) (2 góc ở đáy của tg cân AMN)

BM=CN (gt)

\(\Rightarrow\Delta BME=\Delta CNF\) (Hai tg vuông có cạnh huyền và một góc nhọn tương ứng = nhau thì bằng nhau)

c/

Xét tg cân AMN có AM=AN (1)

\(\Delta BME=\Delta CNF\left(cmt\right)\Rightarrow ME=NF\) (2)

Từ (1) và (2) => AM-ME=AN-NF => AE=AF

Xét tg vuông AEO và tg vuông AFO có

AE=AF (cmt)

AO chung

\(\Rightarrow\Delta AEO=\Delta AFO\) (Hai tg vuông có cạnh huyền và cạnh góc vuông tương ứng bằng nhau thì bằng nhau)

\(\Rightarrow\widehat{OAE}=\widehat{OAF}\) => AO là phân giác của \(\widehat{MAN}\)

d/

Ta có 

\(\widehat{HMN}=\widehat{HMA}-\widehat{AMN}=90^o-\widehat{AMN}\)

\(\widehat{HNM}=\widehat{HNA}-\widehat{ANM}=90^o-\widehat{ANM}\)

Mà \(\widehat{AMN}=\widehat{ANM}\)

\(\Rightarrow\widehat{HMN}=\widehat{HNM}\Rightarrow\Delta HMN\) cân tại H 

Ta có

\(OE\perp AM;HM\perp AM\)=> OE//HM \(\Rightarrow\widehat{AOE}=\widehat{AHM}\) (góc đồng vị)

Chứng minh tương tự ta cũng có OF//HN \(\Rightarrow\widehat{AOF}=\widehat{AHN}\) (góc đồng vị)

Mà \(\Delta AEO=\Delta AFO\Rightarrow\widehat{AOE}=\widehat{AF}\)

\(\Rightarrow\widehat{AHM}=\widehat{AHN}\)=> HO là phân giác của \(\widehat{MHN}\)

Xét tg cân HMN có

 HO là phân giác của \(\widehat{MHN}\)=> HO là đường  trung trực của tg HMN (trong tg cân đường phân giác của góc ở đỉnh đồng thời là đường trung trực) => \(HO\perp MN\) tại trung điểm của MN

Xét tg cân AMN có

AO là đường phân giác của \(\widehat{MAN}\) (cmt) => AO là đường trung trực của tg AMN (trong tg cân đường phân giác của góc ở đỉnh đồng thời là đường trung trực) => \(AO\perp MN\) tại trung điểm của MN

=> AO trung HO (Từ 1 điểm trên đường thẳng chỉ duy nhất dựng được 1 đường thẳng vuông góc với đường thẳng đã cho)

=> A; O; H thẳng hàng

10 tháng 11 2019

a)ta có AB=AC

=)TAM giác ABC cân tại A 

=)Góc B2=góc C1

Lại có B1+B2=180độ(kề bù)

C1+C2=180độ(kề bù)

mà B2=C1(cmt)

=)B1=C2

Xét tam giác ABM và tam giác ACN có

BM=CN(GT)

B1=C2(CMT)

AB=AC(GT)

=)TAM giác ABM = tam giác ACN (c-g-c)

=)AM=AN(2 cạnh tương ứng )

bạn tự viết kí hiệu nhá mik ko bít cách viết

10 tháng 11 2019

b)ta có tam giác ABM=tam giác ACN (cmt)

=)góc M=góc N (2 góc tương ứng)

xét tam giác vuông BME và tam giác vuông CNF có

BM=CN(gt)

góc M=GÓC N(cmt)

=)tam giác vuông BME=tam giác vuông CNF (cạnh huyền-góc nhọn)

2 tháng 2 2019

A B C M N 1 2 2 1 E F 1 1 2 2 O

CM : a) Ta có: t/giác ABC cân tại A

=> góc B2 = góc C2

Mà góc B1 + góc B2 = 1800

       góc C1 + góc C2 = 1800

=> góc B1 = góc C1

Xét t/giác AMB và t/giác ANC

có AB = AC (gt)

  góc B1 = góc C1 (cmt)

  MB = NC (gt)

=> t/giác AMB = t/giác ANC (c.g.c)

=> AM = AN (hai cạnh tương ứng)

=> t/giác AMN là t/giác cân tại A

b) Ta có: t/giác AMN cân tại A

=> góc M = góc N

Xét t/giác BME và t/giác CNF 

có góc E1 = góc F1 = 900 (gt)

  BM = CN (gt)

  góc M = góc N (cmt)

=> t/giác BME = t/giác CNF (cạnh huyền - góc nhọn)

c,d) tự làm

8 tháng 1 2022

( Hình bạn tự vẽ giúp mình nha )

a) Xét △ ABM và △ ACN có

          AB = AC

          BM = CN

         \(\widehat{ABM}=\widehat{ACN}\)

⇒ △ ABM = △ ACN ( c - g - c )

⇒ AM = AN ( hai cạnh tương ứng )

Suy ra: △ AMN cân tại A

b) Xét tam giác vuông BME và tam giác vuông CNF ta có:

         MB = CN

         \(\widehat{EMB}=\widehat{CNF}\)   ( vì △ AMN cân tại A )

⇒ △ BME = △ CNF ( ch - gn )

c) Vì △ BME = △ CNF ( cmt )

⇒ ME = CF

⇒ EA = FA  

Xét tam giác vuông EAO và tam giác vuông AOF ta có:

          AE = FA

          AO cạnh chung

⇒ △ EOA = △ FOA ( ch - cgv )

⇒ \(\widehat{EAO}=\widehat{FAO}\)

Hay AO là tia phân giác góc \(\widehat{MAN}\)

d) Ta có:     EO ⊥ AM

                   MH ⊥ AM

⇒ EO // MH

Lại có:    \(\widehat{AOE}=\widehat{AHM}\) ( cùng phụ \(\widehat{EAO}\) )

Từ đó suy ra:    A, O, H thẳng hàng

a: ΔACB cân tại A

=>\(\widehat{ABC}=\widehat{ACB}\)

mà \(\widehat{ACB}=\widehat{FCN}\)(hai góc đối đỉnh)

nên \(\widehat{ABC}=\widehat{FCN}\)

Xét ΔEBM vuông tại M và ΔFCN vuông tại N có

BM=CN

\(\widehat{EBM}=\widehat{FCN}\)

Do đó: ΔEBM=ΔFCN

=>EM=FN

b: ED//AC

=>\(\widehat{EDB}=\widehat{ACB}\)(hai góc đồng vị)

mà \(\widehat{ABC}=\widehat{ACB}\)

nên \(\widehat{EDB}=\widehat{ABC}\)

=>\(\widehat{EBD}=\widehat{EDB}\)

=>ΔEBD cân tại E

ΔEBD cân tại E

mà EM là đường cao

nên M là trung điểm của BD

=>MB=MD

c: EM\(\perp\)BC

FN\(\perp\)BC

Do đó: EM//FN

Xét ΔOME vuông tại M và ΔONF vuông tại N có

ME=NF

\(\widehat{MEO}=\widehat{NFO}\)(hai góc so le trong, EM//FN)

Do đó: ΔOME=ΔONF

=>OE=OF

29 tháng 3 2020

t lười vẽ hình lắm, vô cùng xin lỗi :(

a) Vì ∆ ABC cân tại A nên AH vừa là đường cao, vừa là trung tuyến => HB = HC = 12:2 = 6 

Áp dụng định lí  Py-ta-go cho ∆ AHB, ta được: AH2 + BH2 = AB2 => AB2 = 122 + 92 = 225 = 152 => AB = 15 = AC

=> PABC = AB + AC + BC = 15 + 15 + 18 = 48

b) Vì BM = CN (gt) ; HB = HC (cmt) => HB + BM = HC + CN => HM = HN => AH là trung tuyến của ∆ AMN (1)

 Lại có: AH ┴ BC hay AH ┴ MN => AH là đường cao của ∆ AMN (2)

Từ (1) và (2) =>∆ AMN cân tại A

c) Xét ∆ BIM và ∆ CKN vuông tại I và K có:

MB = NC (gt) ; ^KNC = ^IMB (∆AMN cân tại A) => ∆ BIM = ∆ CKN ( ch - gn ) => MI = KN

Mà AM = AN (∆AMN cân tại A) => AI = AK => ∆ AIK cân tại A

=> ^AIK = ^AKI = ( 180o - ^MAN ) : 2 = ^AMN = ^ANM => IK // MN (đồng vị) hay IK // BC

d) Vì IK // MN => ^IKN = ^KCN (slt) ; ^KIB = ^IBM (slt)

    Lại có: ^IBM = ^KCN ( vì ∆BIM=∆CKN ) => ^IKN = ^KIB hay ^OIK = ^OKI => ∆OKI cân tại O => OK = OI

Xét ∆ AIO và ∆ AKO có:

AI = AK ( ∆AIK cân tại A) ; OK = OI (cmt) ; AO (chung) => ∆ AIO = ∆ AKO ( c-c-c )

=> ^OAI = ^OAK (3)

Vì ∆AMN cân tại A => AH là phân giác của ∆AMN.=> ^HAM = ^HAN hay ^HAI = ^HAK (4)

Từ (3) và (4) => A, O, H thẳng hàng.

Ya, that's it!

16 tháng 4 2020

Kien thuc nay ai da duoc hoc ma hieu 

crazy girl

16 tháng 10 2018