Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: ΔACB cân tại A
=>\(\widehat{ABC}=\widehat{ACB}\)
mà \(\widehat{ACB}=\widehat{FCN}\)(hai góc đối đỉnh)
nên \(\widehat{ABC}=\widehat{FCN}\)
Xét ΔEBM vuông tại M và ΔFCN vuông tại N có
BM=CN
\(\widehat{EBM}=\widehat{FCN}\)
Do đó: ΔEBM=ΔFCN
=>EM=FN
b: ED//AC
=>\(\widehat{EDB}=\widehat{ACB}\)(hai góc đồng vị)
mà \(\widehat{ABC}=\widehat{ACB}\)
nên \(\widehat{EDB}=\widehat{ABC}\)
=>\(\widehat{EBD}=\widehat{EDB}\)
=>ΔEBD cân tại E
ΔEBD cân tại E
mà EM là đường cao
nên M là trung điểm của BD
=>MB=MD
c: EM\(\perp\)BC
FN\(\perp\)BC
Do đó: EM//FN
Xét ΔOME vuông tại M và ΔONF vuông tại N có
ME=NF
\(\widehat{MEO}=\widehat{NFO}\)(hai góc so le trong, EM//FN)
Do đó: ΔOME=ΔONF
=>OE=OF
a) Xét tam giác MAE và tam giác MCB
có AM= AC (GT)
BM = ME(GT)
góc AME = góc CMB ( đối đỉnh)
suy ra tam giác MAE = tam giác MCB (c.g.c) (1)
b) Từ (1) suy ra AE = BC ( hai cạnh tương ứng) (2)
Xét tam giác ANF và tam giác BNC
có AN = BN(GT)
góc ANF = góc BNC ( đối đỉnh)
NF=NC (GT)
suy ra tam giác ANF = tam giác BNC (c.g.c) (3)
suy ra AF = BC ( hai cạnh tương ứng ) (4)
Từ (2) và (4) suy ra AE=AF (5)
c) Từ (1) suy ra góc MAE = góc C
Từ (3) suy ra góc FAB = góc B
mà góc BAC + góc B + góc C = 1800
suy ra góc BAC + góc MAE+góc FAB = 1800
hay góc EAF = 1800
suy ra ba điểm A, E, F thẳng hàng
a: Xét tứ giác AMCP có
N là trung điểm của AC
N là trung điểm của MP
Do đó: AMCP là hình bình hành
Suy ra: AM=PC
a: Xét ΔAMD vuông tại M và ΔAND vuông tại N có
AD chung
góc MAD=góc NAD
=>ΔMAD=ΔNAD
=>AM=AN
b: Xét ΔACB có AM/AB=AN/AC
nên MN//BC
c: Xét ΔADE có
AM vừa là đường cao, vừa là trung tuýen
=>ΔADE cân tại A
=>AD=AE
Xét ΔADF có
AN vừa là đường cao, vừa là trung tuyến
=>ΔADF cân tại A
=>AD=AF
=>AE=AF
=>ΔAEFcân tạiA