Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A D B C E H K I
Vì tam giác ABC cân tại Asuy ra AB=AC, góc B=góc C
mà góc ABC + góc ABD = 1800, góc ACB + góc ACE = 1800
suy ra góc ABD = góc ACE
Xét tam giác ABD và tam giác ACE
có AB=AC (CMT); góc ABD = góc ACE; BD=CE (GT)
suy ra tam giác ABD = tam giác ACE (c.g.c) (*)
suy ra góc DAB=góc EAC (hai góc tương ứng)
Xét tam giác vuông AHB và tam giác vuông ACK
có AB=AC (CMT), góc DAB=góc EAC (CMT)
suy ra tam giác AHB = tam giác ACK ( cạnh huyền-góc nhọn) (1)
b) Tư (1) suy ra AH=AK (hai cạnh tương ứng) (2)
Xét tam giác vuông AHI và tam giác vuông AKI
có AI chung, AH=AK (CMT)
suy ra tam giác AHI = tam giác AKI (cạnh huyền-cạnh góc vuông)
suy ra góc HAI=góc KAI
suy ra AI là tia phân giác của góc DAE
c) Từ (2) suy ra tam giác AHK cân tại A
suy ra góc AHK = góc AKH (3)
tam giác AHK có góc HAK + góc AHK + góc AKH=1800 (4)
Từ (3) và (4) suy ra góc AHK = (1800- góc AHK ) :2 (5)
Từ (*) suy ra tam giác ADE cân tại A
suy ra góc ADE = góc AED (6)
tam giác ADE có góc EAD + góc ADE + góc AÈD=1800 (7)
Từ (6) và (7) suy ra góc ADE = (1800- góc DAE ) :2 (8)
Từ (5) và (8) suy ra góc ADE = góc AHK
mà góc ADE đồng vị với góc AHK
suy ra HK//DE
a: Xét ΔABD và ΔACE có
AB=AC
góc ABD=góc ACE
BD=CE
=>ΔABD=ΔACE
=>AD=AE
Xét ΔBHD vuông tại H và ΔCKE vuông tại K có
BD=CE
góc D=góc E
=>ΔBHD=ΔCKE
=>BH=CK
Xét ΔAHB vuông tại H và ΔAKC vuông tại K có
AB=AC
BH=CK
=>ΔAHB=ΔAKC
b: góc IBC=góc HBD
góc ICB=góc KCE
mà góc HBD=góc KCE
nên góc IBC=góc ICB
=>IB=IC
IB+BH=IH
IC+CK=IK
mà IB=IC; BH=CK
nên IK=IH
Xét ΔAHI vuông tại H và ΔAKI vuông tại K có
AH=AK
AI chung
=>ΔAHI=ΔAKI
=>góc HAI=góc KAI
=>AI là phân giác của góc DAE
c: Xet ΔADE có AH/AD=AK/AE
nên HK//DE
a: Xét ΔABD và ΔACE có
AB=AC
góc ABD=góc ACE
BD=CE
=>ΔADB=ΔAEC
=>AD=AE
=>ΔADE cân tại A
b,c: Xét ΔAHB vuông tại H và ΔAKC vuông tại K có
AB=AC
góc HAB=góc KAC
=>ΔAHB=ΔAKC
=>BH=CK
Xét ΔAMB vuông tại M và ΔANC vuông tại N có
AB=AC
góc MAB=góc NAC(góc MAB=góc MAC+góc BAC;góc NAC=góc NAB+góc BAC;gócMAC=góc NAB)
=>ΔAMB=ΔANC
=>BM=CN
d: Xét ΔADE có AH/AD=AK/AE
nên HK//DE
=>HK//BC
a: Xét ΔABD và ΔACE có
AB=AC
góc ABD=góc ACE
BD=CE
=>ΔABD=ΔACE
=>AD=AE
Xét ΔBHD vuông tại H và ΔCKE vuông tại K có
BD=CE
góc D=góc E
=>ΔBHD=ΔCKE
=>BH=CK
Xét ΔAHB vuông tại H và ΔAKC vuông tại K có
AB=AC
BH=CK
=>ΔAHB=ΔAKC
b: góc IBC=góc HBD
góc ICB=góc KCE
mà góc HBD=góc KCE
nên góc IBC=góc ICB
=>IB=IC
IB+BH=IH
IC+CK=IK
mà IB=IC; BH=CK
nên IK=IH
Xét ΔAHI vuông tại H và ΔAKI vuông tại K có
AH=AK
AI chung
=>ΔAHI=ΔAKI
=>góc HAI=góc KAI
=>AI là phân giác của góc DAE
c: Xet ΔADE có AH/AD=AK/AE
nên HK//DE
Bạn tự vẽ hình nha!
a.
Ta có:
- B1 + B2 = 180
- C1 + C2 = 180
mà B1 = C1 (tam giác ABC cân tại A)
=> B2 = C2 (1)
Xét tam giác ADB và tam giác AEC:
AB = AC (tam giác ABC cân tại A)
B2 = C2 (theo 1)
BD = CE (gt)
=> Tam giác ADB = ACE (c.g.c)
=> AD = AE (2 cạnh tương ứng)
=> Tam giác ADE
b.
Xét tam giác AHB vuông tại A và tam giác AKC vuông tại K:
AB = AC (tam giác ABC cân tại A)
A1 = A2 (tam giác ADB = tam giác AEC)
=> Tam giác AHB = Tam giác AKC (cạnh huyền - góc nhọn)
=> BH = CK (2 cạnh tương ứng)
AH = AK (2 cạnh tương ứng)
c.
Xét tam giác HDB vuông tại H và tam giác KEC vuông tại K:
BH = CK (theo câu b)
BD = CE (gt)
=> Tam giác HDB = Tam giác KEC (cạnh huyền - cạnh góc vuông)
Ta có:
DBH = IBC (2 góc đối đỉnh)
KCE = ICB (2 góc đối đỉnh)
mà DBH = KCE (tam giác HDB = tam giác KEC)
=> IBC = ICB
=> Tam giác IBC cân tại I
a: Xét ΔABD và ΔACE có
AB=AC
góc ABD=góc ACE
BD=CE
=>ΔABD=ΔACE
=>AD=AE
b:
Xét ΔBHD vuông tại H và ΔCKE vuông tại K có
BD=CE
góc D=góc E
=>ΔBHD=ΔCKE
=>góc HBD=góc KCE
=>góc IBC=góc ICB
=>ΔIBC cân tại I
c: Xét ΔABI và ΔACI có
AI chung
AB=AC
BI=CI
=>ΔABI=ΔACI
=>góc BIA=góc CIA
=>IA là phân giác của góc BIC
a:
Xét ΔABD và ΔACE có
AB=AC
góc ABD=góc ACE
BD=CE
=>ΔABD=ΔACE
=>AD=AE
Xét ΔBHD vuông tại H và ΔCKE vuông tại K có
BD=CE
góc D=góc E
=>ΔBHD=ΔCKE
=>BH=CK
b:
Xét ΔAHB vuông tại H và ΔAKC vuông tại K có
AB=AC
BH=CK
=>ΔAHB=ΔAKC
c: Xét ΔADE có AH/AD=AK/AE
nên HK//DE
=>HK//BC
a: Xét ΔABD và ΔACE có
AB=AC
góc ABD=góc ACE
BD=CE
=>ΔABD=ΔACE
=>AD=AE
Xét ΔBHD vuông tại H và ΔCKE vuông tại K có
BD=CE
góc D=góc E
=>ΔBHD=ΔCKE
=>BH=CK
b: Xét ΔAHB vuông tại H và ΔAKC vuông tại K có
AB=AC
BH=CK
=>ΔAHB=ΔAKC
a: Xét ΔABD và ΔACE có
AB=AC
\(\widehat{ABD}=\widehat{ACE}\)
BD=CE
Do đó; ΔABD=ΔACE
Suy ra: AD=AE
hay ΔADE cân tại A
Xét ΔABH vuông tại H và ΔACK vuông tại K có
AB=AC
\(\widehat{HAB}=\widehat{KAC}\)
Do đó: ΔABH=ΔACK
Suy ra: BH=CK
b: Ta có: ΔABH=ΔACK
nên \(\widehat{ABH}=\widehat{ACK}\)
c: Ta có: \(\widehat{OBC}=\widehat{HBD}\)
\(\widehat{OCB}=\widehat{KCE}\)
mà \(\widehat{HBD}=\widehat{KCE}\)
nên \(\widehat{OBC}=\widehat{OCB}\)
hay ΔOBC cân tại O
a: Xét ΔABD và ΔACE có
AB=AC
\(\widehat{ABD}=\widehat{ACE}\)
BD=CE
Do đó: ΔABD=ΔACE
Suy ra: AD=AE
hay ΔADE cân tại A
Xét ΔAHB vuông tại H và ΔAKC vuông tại K có
AB=AC
\(\widehat{HAB}=\widehat{KAC}\)
Do đó: ΔAHB=ΔAKC
Suy ra: AH=AK
hay ΔAHK cân tại A
Xét ΔAIH vuông tại B và ΔAIK vuông tại K có
AI chung
AH=AK
Do đó: ΔAIH=ΔAIK
Suy ra:IH=IK
hay ΔIHK cân tại I