Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: ˆABD+ˆABC=1800ABD^+ABC^=1800(hai góc kề bù)
ˆACE+ˆACB=1800ACE^+ACB^=1800(hai góc kề bù)
mà ˆABC=ˆACBABC^=ACB^(hai góc ở đáy của ΔABC cân tại A)
nên ˆABD=ˆACEABD^=ACE^
Xét ΔABD và ΔACE có
AB=AC(ΔABC cân tại A)
ˆABD=ˆACEABD^=ACE^(cmt)
BD=CE(gt)
Do đó: ΔABD=ΔACE(c-g-c)
Suy ra: AD=AE(hai cạnh tương ứng)
Ta có: AD=AE(cmt)
nên A nằm trên đường trung trực của DE(Tính chất đường trung trực của một đoạn thẳng)(1)
Ta có: MD=ME(M là trung điểm của DE)
nên M nằm trên đường trung trực của DE(Tính chất đường trung trực của một đoạn thẳng)(2)
Từ (1) và (2) suy ra AM là đường trung trực của DE
⇔AM⊥DE⇔AM⊥DE
hay AM⊥BCAM⊥BC(đpcm)
a) xét 2 tam giác vuông ABM VÀ ACM, có:
AB=AC ( ABC CÂN)
góc b = góc c (___nt____)
BM=CM ( BD=EC; DM=ME)
=> TAM GIÁC ABM = T/GIÁC ACM
=>góc amb = góc amc (2 góc tuog ứng)
mà amb và amc là 2 góc kề bù
=> amb = amc = 90 độ hay am vuông góc với bc
b) ta có ab = ac vì t/giác abc cân tại a
xét t/giác adm và t/giác ame, có
am chung
góc amd=góc ame (cmt)
dm=me ( gt)
=> t/giác ADM = t/giác AME
=> AD=AE ( 2 cạnh tương ứng )
A B D M E C
a, \(\Delta AMB=\Delta AMC(c.c.c)\Rightarrow\widehat{AMB}=\widehat{AMC}\)
Ta lại có : \(\widehat{AMB}+\widehat{AMC}=180^0\)=> \(\widehat{AMB}=90^0\)
Vậy \(AM\perp BC\)
b, Hình chiếu MD = ME nên đường xiên AD = AE . Hình chiếu MD < MB nên đường xiên AD < AB . Ta có : AD < AB = AC
a: Xét ΔABC vuông tại A và ΔADE vuông tại A có
AB=AD
AC=AE
Do đó: ΔABC=ΔADE
b: Xét ΔAMD và ΔANB có
AM=AN
MD=NB
AD=AB
Do đó: ΔAMD=ΔANB
a/ Xét tg ABD và tg EBD có:
BD chung
AB = BE (gt)
góc ABD = góc EBD ( BD là pg góc B)
=> tg ABD = tg EBD (c-g-c)
=> \(\left\{{}\begin{matrix}\text{AD = DE (2 cặp cạnh tương ứng)}\\\text{góc BAD = góc BED (2 cặp góc tương ứng)}\end{matrix}\right.\)
mà góc BAD = 90 ( tg ABC vuông tại A)
=> góc BED = 90
=> DE vuông góc BC
a) Ta có: \(\widehat{ABD}+\widehat{ABC}=180^0\)(hai góc kề bù)
\(\widehat{ACE}+\widehat{ACB}=180^0\)(hai góc kề bù)
mà \(\widehat{ABC}=\widehat{ACB}\)(hai góc ở đáy của ΔABC cân tại A)
nên \(\widehat{ABD}=\widehat{ACE}\)
Xét ΔABD và ΔACE có
AB=AC(ΔABC cân tại A)
\(\widehat{ABD}=\widehat{ACE}\)(cmt)
BD=CE(gt)
Do đó: ΔABD=ΔACE(c-g-c)
Suy ra: AD=AE(hai cạnh tương ứng)
Ta có: AD=AE(cmt)
nên A nằm trên đường trung trực của DE(Tính chất đường trung trực của một đoạn thẳng)(1)
Ta có: MD=ME(M là trung điểm của DE)
nên M nằm trên đường trung trực của DE(Tính chất đường trung trực của một đoạn thẳng)(2)
Từ (1) và (2) suy ra AM là đường trung trực của DE
\(\Leftrightarrow AM\perp DE\)
hay \(AM\perp BC\)(đpcm)