K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 8 2015

a) ta co AB=AC ( tam giac ABC can tai A)

              AN= AM ( gt)

---> AB-AN=AC-AM

---> BN=CM

b) cm tam giac ANM can tai A ( AN=AM)--> goc ANM = (180-A):2

ma goc ABC =(180-A):2 ( tam giac ABC can tai A)

nen goc ANM= goc ABC ma 2 gocnam o vi tri dong vi nen NM// BC==> tu giac BNMC la hinh thang--> hinh thang co hai goc B= goc C--> hinh thangcan

c> cm IK là đường trung bình hình thang NMCB==> IK= (NM+BC):2 = (6+10):2=9 cm

4 tháng 4 2020

A B C M N I K

a) Ta có: MN // BC(gt) => \(\frac{AM}{AB}=\frac{AN}{AC}\)(theo định lí Ta - lét)

=> \(AN=\frac{AM}{AB}.AC=\frac{2,25}{6}\cdot8=3\)(cm)

 => \(CN=AC-AN=8-3=5\)

b) Ta có: MK // BI (gt) => \(\frac{MK}{BI}=\frac{AK}{AI}\)(theo định lí Ta - lét)

       NK // IC (gt) => \(\frac{KN}{IC}=\frac{AK}{AI}\)(theo định lí Ta - lét)

=> \(\frac{MK}{BI}=\frac{KN}{IC}\) mà BI = IC (gt)

=> MK = KN => K là trung điểm của MN

c) Do BN là tia p/giác của góc ABC => \(\frac{AB}{BC}=\frac{AN}{NC}\)(t/c đường p/giác của t/giác)

=> \(BC=AB:\frac{AN}{NC}=6:\frac{3}{5}=10\)(cm)

Ta có: BC2 = 102 = 100

   AB2 + AC2 = 62  + 82 = 100

=> BC2 = AB2 + AC2 => t/giác ABC vuông tại A (theo định lí Pi - ta - go đảo)

=> SABC = AB.AC/2 = 6.8/2 = 24 (cm2)

5 tháng 4 2020

Hình bạn tự vẽ nhá

a) Ta có: MB = AB - AM = 6 - 2,25 = 3,75 (cm)

Gọi x là AN

NC là: 8 - x

Vì MN // BC, theo định lý Ta-lét ta có:

AMMB=ANNC⇔2,253,75=x8−x

⇔2,25(8−x)3,75(8−x)=3,75x3,75(8−x)

⇔2,25(8−x)=3,75x

⇔18−2,25x=3,75x

⇔−2,25x−3,75x=−18

⇔−6x=−18

x=−18−6

x=3

Nên NC = 8 - x = 8 - 3 = 5 (cm)

Vậy AN = 3cm, NC = 5cm

b) Ta có: MN // BC (gt) (1)

 MK // BI, theo hệ quả của định lý Ta-lét ta có:

AKAI=MKBI (2)

Từ (1)  KN // IC, theo hệ quả của định lý Ta-lét ta có:

AKAI=KNIC (3)

Từ (2), (3) MKBI=KNIC(4)

Mà BI = IC (gt) (5)

Từ (4), (5) MK=KN

Nên K là trung điểm của MN

28 tháng 2 2020

Câu 3: 3.5đ. Cho tam giác ABC có AB = 6cm, AC = 8 cm. TRên cạnh AB lấy điểm M sao cho AM = 2,25 cm. Qua M kẻ đường thẳng song song với BC cắt cạnh AC tại N

a) Tính độ dài các đoạn thẳng AN, CN.

b) Gọi I là trung điểm của BC, K là giao điểm của AI và MN. Chứng minh K là trung điểm của MN

. c) Nếu BN là tia phân gíac của góc ABC thì diện tích tam giác ABC là bao nhiêu?

3 tháng 8 2017

1) Cho tam giác ABC, gọi I và K lần lượt là hình chiếu của A trên phân giác góc B và góc C. Cm: IK//BC

2) Cho tứ giác ABCD. Gọi M,N lần lượt là trung điểm AB, CD. Cm: MN < (AD+BC)/2

3) Cho tam giác ABC (AB<AC) trên AB lấy M, AC lấy N sao cho BM=CN. Gọi I và K lần lượt là trung điểm MN, BC. IK cắt AB, AC tại P, Q. Cm: góc BPM = góc AQM

=

1) Cho tam giác ABC, gọi I và K lần lượt là hình chiếu củ

1) Cho tam giác ABC, gọi I và K lần lượt là hình chiếu của A trên phân giác góc B và góc C. Cm: IK//BC

2) Cho tứ giác ABCD. Gọi M,N lần lượt là trung điểm AB, CD. Cm: MN < (AD+BC)/2

3) Cho tam giác ABC (AB<AC) trên AB lấy M, AC lấy N sao cho BM=CN. Gọi I và K lần lượt là trung điểm MN, BC. IK cắt AB, AC tại P, Q. Cm: góc BPM = góc AQMa A trên phân giác góc B và góc C. Cm: IK//BC

2) Cho tứ giác ABCD. Gọi M,N lần lượt là trung điểm AB, CD. Cm: MN < (AD+BC)/2

3) Cho tam giác ABC (AB<AC) trên AB lấy M, AC lấy N sao cho BM=CN. Gọi I và K lần lượt là trung điểm MN, BC. IK cắt AB, AC tại P, Q. Cm: góc BPM = góc A

1) Cho tam giác ABC, gọi I và K lần lượt là hình chiếu của A trên phân giác góc B và góc C. Cm: IK//BC

2) Cho tứ giác ABCD. Gọi M,N lần lượt là trung điểm AB, CD. Cm: MN < (AD+BC)/2

3) Cho tam giác ABC (AB<AC) trên AB lấy M, AC lấy N sao cho BM=CN. Gọi I và K lần lượt là trung điểm MN, BC. IK cắt AB, AC tại P, Q. Cm: góc BPM = góc AQM

QM

1) Cho tam giác ABC, gọi I và K lần lượt là hình chiếu của A trên phân giác góc B và góc C. Cm: IK//BC

2) Cho tứ giác ABCD. Gọi M,N lần lượt là trung điểm AB, CD. Cm: MN < (AD+BC)/2

3) Cho tam giác ABC (AB<AC) trên AB lấy M, AC lấy N sao cho BM=CN. Gọi I và K lần lượt là trung điểm MN, BC. IK cắt AB, AC tại P, Q. Cm: góc BPM = góc AQM

tóm lị là ABGHMN là sai 

3 tháng 8 2017

Vậy tóm lại là sao, mk hk hỉu

28 tháng 9 2020

a) ∆ABC có M, N lần lượt là trung điểm của AB, AC nên MN là đường trung bình của tam giác => MN // BC

Tứ giác MNCB có MN // BC nên là hình thang

b) Xét ∆EQN và ∆KQC có:

     ^ENQ = ^KCQ (BN//CK, so le trong)

     QN = QC (gt)

     ^EQN = ^KQC (đối đỉnh)

Do đó ∆EQN = ∆KQC (g.c.g)

=> EN = KC ( hai cạnh tương ứng)                  (1)

∆NBC có Q là trung điểm của NC và QE // BC nên E là trung điểm của BN => EN = BE              (2)

Từ (1) và (2) suy ra KC = BE

Tứ giác EKCB có KC = BE và KC // BE nên là hình bình hành => EK = BC (đpcm)

c) EF = EQ - FQ = 1/2BC - 1/2MN = 1/2BC - 1/4BC = 1/4BC (đpcm)

d) Gọi J là trung điểm của BC 

Ta có EJ là đường trung bình của ∆NBC nên EJ // NC mà FI⊥NC nên FI⊥EJ

Tương tự suy ra EI⊥FJ suy ra I là trực tâm của ∆EFJ => JI⊥EF

Mà dễ thấy EF // BC nên IJ⊥BC

∆BIC có IJ vừa là đường cao vừa là trung tuyến nên là tam giác cân (đpcm)

28 tháng 9 2020

a) Do M, N lần lượt là trung điểm của AB, AC nên MN là đường trung bình của tam giác ABC.

=> MN //BC

Tứ giác MNCB có MNBC nên MNCB là hình thang.

b) Xét tứ giác EKCB có EK//BC, BE//CK

=> EKCB là hình bình hành

=> EK = BC (đpcm)

18 tháng 10 2021

a: Xét ΔABC có 

M là trung điểm của AB

N là trung điểm của AC

Do đó:MN là đường trung bình của ΔBAC

Suy ra: MN//BC và \(MN=\dfrac{BC}{2}=\dfrac{16}{2}=8\left(cm\right)\)(1)

hay BMNC là hình thang

b: Xét ΔOBC có 

I là trung điểm của OB

K là trung điểm của OC

Do đó: IK là đường trung bình của ΔOBC

Suy ra: IK//BC và \(IK=\dfrac{BC}{2}\left(2\right)\)

Từ (1) và (2) suy ra MN//IK và MN=IK

hay MNKI là hình bình hành

15 tháng 12 2019

hi army 

kbn vs mik nha