Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔAMB và ΔANC có
AB=AC
\(\widehat{ABM}=\widehat{ACN}\)
BM=CN
Do đó: ΔAMB=ΔANC
Suy ra: AM=AN
b: Xét ΔAIM vuông tại I và ΔAKN vuông tại K có
AM=AN
\(\widehat{IAM}=\widehat{KAN}\)
Do đó: ΔAIN=ΔAKN
Suy ra: AI=AK
Ta có : Tam giác ABM cân tại B
=>MAB^=AMB^ (1)
Lại có : IMB^=IAB^=90* (2)
Từ 1 và 2 : +)IAM^=90*-MAB^
+)IMA^ =90*-AMB^
=>IAM^=IMA^
=>Tam giác IAM cân tại I
=>IA=iM
A B C M I N K P 1 2
''∠'' là góc nhé.
a) Vì ∆ABC vuông tại A (GT)
=> ∠BAC = 90o (ĐN) (1)
Vì IM ⊥ BC (GT)
=> ∠IMB = 90o
Mà ∠BAC = 90o (Theo (1))
(Ngoặc ''}'' 2 điều trên)
=> ∠BAC = ∠IMB = 90o
Hay ∠BAI = ∠IMB = 90o (2)
Xét ∆ABI và ∆MBI có :
∠BAI = ∠IMB = 90o (Theo (2))
BI chung
BA = BM (Gt)
=> ∆ABI = ∆MBI (cạnh huyền - cạnh góc vuông)
=> AI = IM (2 cạnh tương ứng) (3)
b) Ta có : ∠BAC + ∠NAC = 180o (2 góc kề bù)
Mà ∠BAC = 90o (Theo (1))
=> 90o + ∠NAC = 180o
=> ∠NAC = 180o - 90o = 90o
Vì IM ⊥ BC (GT) => ∠IMC = 90o (ĐN)
(Ngoặc ''}'' 2 điều trên)
=> ∠NAC = ∠IMC = 90o
Hay ∠NAI = ∠IMC = 90o (4)
Lại có : ∠I1 = ∠I2 (2 góc đối đỉnh) (5)
Xét ∆ANI và ∆MCI có :
∠NAI = ∠IMC = 90o (Theo (4))
AI = MI (Theo (3))
∠I1 = ∠I2 (Theo (5))
=> ∆ANI = ∆MCI (g.c.g)
=> AN = MC (2 cạnh tương ứng)
Mà AN + BA = BN
MC + BM = BC
BA = BM (GT)
(Ngoặc ''}'' 4 điều trên)
=> BN = BC
=> ∆NBC cân tại B (ĐN)
P/s : Xin lỗi, mình chỉ làm được đến đây thôi, nghỉ nhiều quá nên mình ngu hẳn, có gì mình nghiên cứu lại sau :(.
a) Xét tam giác ABD và tam giác HBD có :
góc ABD = góc HBD (BD là tia pg)
góc BAD = góc BHD=90 độ (gt)
BD là cạnh chung
=> Tam giác ABD = Tam giác HBD (CH-GN)
=> AD = DH ( 2 cạnh tương ứng )
b) Xét tam giác DHC có :
Góc DHC = 90 độ => DC là cạnh huyền => DC > DH
Ta lại có : AD=DH ( cm ở câu a )
=> DC>AD
a.2ab=am+an
=> 2ab=am+ac+cn
=> ....=am+ab+cn
=> ab=am+cn
=> am+bn=am+cn
=> bm = cn
b. BC cắt MN tại I
vẽ NE // BC ( e thuộc ab kéo dài )
suy ra gốc aABC = gốc AEN
gốc AEN = góc ABC
mà góc ABC = góc ACB ( ABC cân tại A)
hình thang BCNE là hình thang cân
=> CN = BE
mà CN = BM ( câu a )
=> Bm = BE
BI // NE
BI là đường trung bình MNE=> MI=IN
k mk nhá tks bn
a.2ab=am+an
=> 2ab=am+ac+cn
=> ....=am+ab+cn
=> ab=am+cn
=> am+bn=am+cn
=> bm = cn
b. BC cắt MN tại I
vẽ NE // BC ( e thuộc ab kéo dài )
suy ra gốc aABC = gốc AEN
gốc AEN = góc ABC
mà góc ABC = góc ACB ( ABC cân tại A)
hình thang BCNE là hình thang cân
=> CN = BE
mà CN = BM ( câu a )
=> Bm = BE
BI // NE
BI là đường trung bình MNE=> MI=IN
A B C M I K E N
CM : a) Xét t/giác ABM và t/giác ACN
có AB = AC (gt)
góc B = góc C ( vì t/giác ABC cân tại A)
BM = CN (gt)
=> t/giác ABM = t/giác ACN (c.g.c)
=> AM = AN (hai cạnh tương ứng)
b) Ta có: t/giác ABM = t/giác ACN (cmt)
=> góc BAM = góc CAN (hai góc tương ứng)
Xét t/giác AIM và t/giác AKN
có góc AIM = góc AKN = 900 (gt)
AM = AN (cmt)
góc IAM = góc KAN (cmt)
=> t/giác AIM = t/giác AKN ( ch - gn)
=> AI = AK (hai cạnh tương ứng)
c)tự làm
a)Có \(\Delta ABC\)cân \(\Rightarrow AB=AC\)và \(\widehat{B}=\widehat{C}\)
Xét \(\Delta AMB\)và \(\Delta ANC\)có
\(AB=AC\left(cmt\right)\)
\(\widehat{B}=\widehat{C}\left(cmt\right)\)
\(MB=MC\left(gt\right)\)
\(\Rightarrow\Delta AMB=\Delta ANC\left(c.g.c\right)\Rightarrow AM=AN\left(dpcm\right)\)
b) Có \(\Delta AMB=\Delta ANC\left(c.g.c\right)\Rightarrow\widehat{BAM}=\widehat{CAN}\)
Xét \(\Delta AIM\)và \(\Delta AKN\)có :
\(\widehat{AIM}=\widehat{AKN}=90^o\)
\(AM=AN\)
\(\widehat{BAM}=\widehat{CAN}\)
\(\Rightarrow\Delta AIM=\Delta AKN\left(ch-gn\right)\Rightarrow AI=AK\left(dpcm\right)\)
c) Xét \(\Delta IAE\)và \(\Delta KAE\)có :
\(AE:chung\)
\(\widehat{AIM}=\widehat{AKN}=90^o\)
\(AI=AK\left(cmt\right)\)
\(\Rightarrow\Delta IAE=\Delta KAE\left(ch-cgv\right)\)
\(\Rightarrow\widehat{IAE}=\widehat{KAE}\) \(\Rightarrow AE\)là phân giác của \(\widehat{IAK}\)hay \(AE\)là phân giác của\(\widehat{BAC}\)