K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔAKB và ΔAHC có

AK=AH

góc BAK chung

AB=AC

=>ΔAKB=ΔAHC

=>CH=BK

b: Xét ΔOHB và ΔOKC có

góc OHB=góc OKC

HB=KC

góc OBH=góc OCK

=>ΔOHB=ΔOKC

c: ΔOHB=ΔOKC

=>OB=OC

=>AO là trung trực của BC

=>AO vuông góc BC tại I

=>AB>AI

a: Xét ΔABN vuông tại A và ΔACM vuông tại A có

AB=AC

góc ABN=góc ACM

=>ΔABN=ΔACM

b: ΔABN vuông tại A có AE là trung tuyến

nên AE=BE=NE=BN/2

ΔACM vuông tại A có AD là trung tuyến

nên AD=CM/2=BN/2=AE

góc EAB=góc EBA=15 độ

góc DAC=góc DCA=15 độ

=>góc EAD=90-15-15=60 độ

Xét ΔAED có AE=AD  và góc EAD=60 độ

nên ΔAED đều

c: Xét ΔIBC có góc IBC=góc ICB

nên ΔIBC cân tại I

=>IB=IC

=>I nằm trên trung trực của BC

=>A,I,H thẳng hàng

a) Ta có: AK+KB=AB(K nằm giữa A và B)

AH+HC=AC(H nằm giữa A và C)

mà AK=AH(gt)

và AB=AC(ΔABC cân tại A)

nên KB=HC

Xét ΔKBC và ΔHCB có 

KB=HC(cmt)

\(\widehat{KBC}=\widehat{HCB}\)(hai góc ở đáy của ΔABC cân tại A)

BC chung

Do đó: ΔKBC=ΔHCB(c-g-c)

Suy ra: \(\widehat{KCB}=\widehat{HBC}\)(hai góc tương ứng)

hay \(\widehat{OBC}=\widehat{OCB}\)

Xét ΔOBC có \(\widehat{OBC}=\widehat{OCB}\)(cmt)

nên ΔOBC cân tại O(Định lí đảo của tam giác cân)

b) Xét ΔAKH có AK=AH(gt)

nên ΔAKH cân tại A(Định nghĩa tam giác cân)

Ta có: ΔAKH cân tại A(cmt)

nên \(\widehat{AKH}=\dfrac{180^0-\widehat{A}}{2}\)(Số đo của một góc ở đáy trong ΔAKH cân tại A)(1)

Ta có: ΔABC cân tại A(gt)

nên \(\widehat{ABC}=\dfrac{180^0-\widehat{A}}{2}\)(Số đo của một góc ở đáy trong ΔABC cân tại A)(2)

Từ (1) và (2) suy ra \(\widehat{AKH}=\widehat{ABC}\)

mà \(\widehat{AKH}\) và \(\widehat{ABC}\) là hai góc ở vị trí đồng vị

nên KH//BC(Dấu hiệu nhận biết hai đường thẳng song song)

4 tháng 4 2022

Thanks kiu bạn

hihi

22 tháng 2 2022

a, Xét tam giác ABE và tam giác ACD

AB = AC 

AE = AD 

^A _ chung 

Vậy tam giác ABE = tam giác ACD (c.g.c) 

=> BE = CD ( 2 cạnh tương ứng ) 

=> ^ABE = ^ACD ( 2 góc tương ứng ) 

b, Ta có BD = AB - AD ; EC = AC - AE => BD = EC 

Xét tam giác KBD và tam giác KCE có 

^BKD = ^CKE ( đối đỉnh ) 

^KBD = ^KCE (cmt) 

BD = CE (cmt) 

Vậy tam giác KBD = tam giác KCE (g.c.g) 

c, Xét tam giác ABH và tam giác ACH có 

^B = ^C 

AH _ chung 

AB = AC 

Vậy tam giác ABH = tam giác ACH ( c.g.c ) 

=> ^BAH = ^CAH ( 2 góc tương ứng ) 

=> AH là đường phân giác 

hay AK là đường phân giác 

d, Xét tam giác ABC cân tại A có AK là phân giác đồng thời là đường cao 

hay AK vuông BC 

e, Ta có AD/AB = AE/AC => DE//BC (Ta lét đảo)

23 tháng 2 2022

em học lớp 7 ạ

 

7 tháng 1 2018

+) Xét ΔABH và ΔACK, ta có:

AB = AC ( vì tam giác ABC cân tại A)

Giải sách bài tập Toán 7 | Giải sbt Toán 7

AH = AK (giả thiết)

Suy ra: ΔABH = ΔACK(c.g.c)

Giải sách bài tập Toán 7 | Giải sbt Toán 7

+ Do đó, tam giác OBC cân tại O.

Giải sách bài tập Toán 7 | Giải sbt Toán 7

14 tháng 8 2023

mọi người giải giúp em với ạ

 

a: Xét ΔADC và ΔAEB có

AD=AE
góc DAC chung

AC=AB

=>ΔADC=ΔAEB

b: AD+DB=AB

AE+EC=AC

mà AB=AC và AD=AE

nên DB=EC

Xét ΔDBC và ΔECB có

DB=EC

góc DBC=góc ECB

BC chung

=>ΔDBC=ΔECB

=>góc KBC=góc KCB

=>ΔKBC cân tại K

 

31 tháng 5 2017

Hình vẽ:

A B C K H O 1 2 1 2

Giải:

Xét \(\Delta ABH\)\(\Delta ACK\) có:

\(AH=AK\left(gt\right)\)

\(\widehat{A}\) là góc chung

\(AB=AC\) ( Vì \(\Delta ABC\) cân tại \(A\) )

Do đó: \(\Delta ABH=\Delta ACK\left(c.g.c\right)\)

\(\Rightarrow\widehat{B_2}=\widehat{C_2}\) ( cặp góc tương ứng )

\(\widehat{B}=\widehat{C}\) ( Do \(\Delta ABC\) cân tại \(A\) )

\(\Rightarrow\widehat{B}-\widehat{B_2}=\widehat{C}-\widehat{C_2}\)

\(\Rightarrow\widehat{B_1}=\widehat{C_1}\)

\(\Rightarrow\Delta OBC\) cân tại \(O\) . \(\left(đpcm\right)\)

7 tháng 6 2019