Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Kẻ IN//BC; DM//BC
Xét ΔEDM có
I là trung điểm của ED
IN//DM
DO đó: N là trung điểm của ME
Vì DM//BC
nên góc ADM=góc AMD
=>AD=AM
mà AD=EC
nên AM=EC
=>N là trung điểm của AC
Xét ΔAKC có
N là trung điểm của AC
NI//KC
Do đó: I là trung điểm của AK
Xét tứ giác ADKE có
I là trung điểm chung của AK và DE
nên ADKE là hình bình hành
Bn có thể vào câu hỏi tương tự mà kham khảo nhiều lắm...
Kẻ IN//BC; DM//BC
Xét ΔEDM có
I là trung điểm của ED
IN//DM
DO đó: N là trung điểm của ME
Vì DM//BC
nên góc ADM=góc AMD
=>AD=AM
mà AD=EC
nên AM=EC
=>N là trung điểm của AC
Xét ΔAKC có
N là trung điểm của AC
NI//KC
Do đó: I là trung điểm của AK
Xét tứ giác ADKE có
I là trung điểm chung của AK và DE
nên ADKE là hình bình hành
Từ I vẽ đường thẳng II' // BC
Từ D vẽ đường thẳng DD' // BC
=> II' // DD' . Mà I là trung điểm của DE
=> EI' = I'D' ( 1 )
Vì \(\Delta\)ABC cân tại A có DD' // BC => DB = D'C ( 2 )
Mà AD = CE => AE = DB ( 3 )
Từ ( 2 ) và ( 3 ) => D'C = AE ( 4 )
Từ ( 1 ) và ( 4 ) => AI' = 'IC
\(\Delta\)AKC có II' // KC ; AI' = I'C
=>AI = IK ( Đpcm )
Kẻ IN//BC; DM//BC
Xét ΔEDM có
I là trung điểm của ED
IN//DM
DO đó: N là trung điểm của ME
Vì DM//BC
nên góc ADM=góc AMD
=>AD=AM
mà AD=EC
nên AM=EC
=>N là trung điểm của AC
Xét ΔAKC có
N là trung điểm của AC
NI//KC
Do đó: I là trung điểm của AK
Xét tứ giác ADKE có
I là trung điểm chung của AK và DE
nên ADKE là hình bình hành
Giải:
HÌNH TỰ VẼ
Qua \(I\) và \(D\), kẻ IN song song với \(BC;DM\) song song với \(BC\) \(\left(M;N\in AC\right)\)
Do \(\Delta ABC\) cân nên \(\Delta AMD\) cân.
\(\Rightarrow AM=AD\Rightarrow AM=CE\) \(\left(1\right)\)
Mặt khác \(IN\) song song với \(BC\) nên \(IN\) song song với \(MD\).
Xét \(\Delta EMD\) có \(I\) là trung điểm của \(DE\), \(IN\) song song với \(MD\) nên \(N\) là trung điểm của \(ME\). \(\left(2\right)\)
Từ \(\left(1\right)\) và \(\left(2\right)\) => \(N\) là trung điểm của \(AC\) .
Xét\(\Delta ACK\) có \(N\) là trung điểm của \(AC\). \(NI\) song song với \(CK\) nên \(I\) là trung điểm của \(AK\).\(\left(\text{đ}pcm\right)\)
Tham khảo nha:
Giải:
Qua I và D , kẻ IN song song với BC, DM song song với BC (M,N thuộc AC).
Do △ABC△ABC cân nên △AMD△AMD cân => AM=AD => AM=CE (1)
Mặt khác IN song song với BC nên IN song song với MD.
Xét △EMD△EMD có I là trung điểm của DE , IN song song với MD nên N là trung điểm của ME. (2)
Từ (1) và (2) => N là trung điểm của AC .
Xét △ACK△ACK có N là trung điểm của AC. NI song song vs CK nên I là trung điểm của AK.
(dpcm)
Kẻ ON//BC; DM//BC
Xét ΔEDM có
O là trung điểm của ED
ON//DM
DO đó: N là trung điểm của ME
Vì DM//BC
nên góc ADM=góc AMD
=>AD=AM
mà AD=EC
nên AM=EC
=>N là trung điểm của AC
Xét ΔAKC có
N là trung điểm của AC
NO//KC
Do đó: O là trung điểm của AK
Xét tứ giác ADKE có
O là trung điểm chung của AK và DE
nên ADKE là hình bình hành
a. M là trung điểm của DE, I là trung điểm của BE
=> MI là đường trung bình của tam giác EDB
=> MN = \(\frac{1}{2}\) DB (1)
CMTT ta có
MK = \(\frac{1}{2}\) EC (2)
KN = \(\frac{1}{2}\) BD (3)
IN = \(\frac{1}{2}\) EC (4)
lại có BD = CE (5)
từ 1 2 3 4 5 => MI = MK = KN = NI
=> MINK là hình thoi
Qua D, I lần lượt vẽ DM//BC, IN//BC (\(M,N\in BC\)) => DM // IN (quan hệ giữa ba đường thẳng song song)
\(\Delta\)EDM có I là trung điểm của DE và DM // IN nên EN = MN (1)
\(\Delta\)ABC cân tại A có DM //BC nên DB = MC
Kết hợp với AE = DB ( do AD = CE và AB = AC) suy ra AE = MC (2)
Từ (1) và (2) suy ra AN = CN
\(\Delta\)AKC có AN = CN và IN // KC (theo cách vẽ) nên AI = IK
Vậy AI = KI (đpcm)
wadsf