Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Tam giác BMD là tam giác là tam giác cân
còn câu b làm không được nhé
a) \(\Delta ABC\) cân tại A (gt).
\(\Rightarrow AB=AC;\widehat{ABC}=\widehat{ACB}\) (Tính chất tam giác cân).
Ta có: \(\left\{{}\begin{matrix}\widehat{ABD}=180^o-\widehat{ABC}.\\\widehat{ACE}=180^o-\widehat{ACB}.\end{matrix}\right.\)
Mà \(\widehat{ABC}=\widehat{ACB}\left(cmt\right).\)
\(\Rightarrow\widehat{ABD}=\widehat{ACE}.\)
Xét \(\Delta ABD\) và \(\Delta ACE:\)
\(\widehat{ABD}=\widehat{ACE}\left(cmt\right).\\ AB=AC\left(cmt\right).\\ BD=CE\left(gt\right).\\ \Rightarrow\Delta ABD=\Delta ACE\left(c-g-c\right).\)
\(\Rightarrow AD=AE\) (2 cạnh tương ứng).
b) Xét \(\Delta BMD\) vuông tại M và \(\Delta CNE\) vuông tại N:
\(BD=CE\left(gt\right).\\ \widehat{MDB}=\widehat{NEC}\left(\Delta ABD=\Delta ACE\right).\)
\(\Rightarrow\Delta BMD=\Delta CNE\) (cạnh huyền - góc nhọn).
c) Ta có: \(\left\{{}\begin{matrix}AN=AE-NE.\\AM=AD-MD.\end{matrix}\right.\)
Mà \(\left\{{}\begin{matrix}AE=AD\left(\Delta ACE=\Delta ABD\right).\\NE=MD\left(\Delta BMD=\Delta CNE\right).\end{matrix}\right.\)
\(\Rightarrow AN=AM.\)
Mọi người trả lời hộ mình bốn phần nha, combo cả hình nữa nha.Cảm ơn mọi người
a: Xét ΔABD và ΔACE có
AB=AC
\(\widehat{ABD}=\widehat{ACE}\)
BD=CE
Do đó: ΔABD=ΔACE
Suy ra: AD=AE
b: Xét ΔBMD vuông tại M và ΔCNE vuông tại N có
BD=CE
\(\widehat{D}=\widehat{E}\)
Do đó: ΔBMD=ΔCNE
c: Ta có: ΔBMD=ΔCNE
nên DM=EN
Ta có: AM+MD=AD
AN+NE=AE
mà AD=AE
và DM=EN
nên AM=AN
a/ Xét ΔABM;ΔACMΔABM;ΔACM có :
⎧⎩⎨⎪⎪AB=ACBˆ=CˆMB=MC{AB=ACB^=C^MB=MC
⇔ΔAMB=ΔAMC(c−g−c)⇔ΔAMB=ΔAMC(c−g−c)
b/ Xét ΔBHM;ΔCKMΔBHM;ΔCKM có :
⎧⎩⎨⎪⎪⎪⎪BHMˆ=CKMˆ=900Bˆ=CˆMB=MC{BHM^=CKM^=900B^=C^MB=MC
⇔ΔBHM=ΔCKM(ch−gn)⇔ΔBHM=ΔCKM(ch−gn)
⇔BH=CK
E là giao điểm của My và BC
My // CN => ME // AC
=> ^MEB = ^ACB ( đồng vị ) mà ^ACB = ^ABC ( \(\Delta\)ABC cân tại A )
=> ^MEB = ^ABC hay ^MEB = MBE (1)
a) Xét \(\Delta\)DMC và \(\Delta\)NCM có:
MC chung
^DMC = ^NCM ( so le trong )
^DCM = ^NMC ( so le trong )
=> \(\Delta\)DMC = \(\Delta\)NCM => DM = CN (2)
Mặt khác: MB = CN (3)
Từ (2) ; (3) => DM = MB => \(\Delta\)BMD cân (4)
b ) (4) => ^MDB = ^MBD (5)
(5) ; (1) => ^MDB + ^MEB = ^MBD + ^MBE
=> 180 - ^DBE = ^DBE
=> ^DBE = 90 độ
=> \(\Delta\)DBC vuông tại B có DC là cạnh huyền
=> BC < CD