cho tam giác abc cân tại a,...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 1 2019

Bạn xem lại chỗ "CE=BD". 

10 tháng 1 2019

đúng r mà bn

DD
14 tháng 7 2021

a) Xét tam giác\(BAP\)có: 

\(E,F\)lần lượt là trung điểm của \(BA,BP\)

nên \(EF\)là đường trung bình của tam giác \(BEF\).

Suy ra \(EF//AP,EF=\frac{1}{2}AP\).

Tương tự ta cũng có \(EF//AQ,EF=\frac{1}{2}AQ\).

Có qua \(A\)có \(AP,AQ\)đều song song với \(EF\)nên \(Q,A,P\)thẳng hàng. 

mà \(AP=AQ\left(=2EF\right)\)suy ra \(A\)là trung điểm của \(PQ\).

b) Xét tam giác \(ABC\):

\(E,F\)lần lượt là trung điểm \(AB,AC\)

nên \(EF\)là đường trung bình của tam giác \(ABC\)

suy ra \(EF//BC,EF=\frac{1}{2}BC\).

suy ra \(BC//AQ,BC=AQ\)

do đó tứ giác \(ACBQ\)là hình bình hành. 

suy ra \(BQ//AC\)

.Tương tự ta cũng chứng minh được \(ABCP\)là hình bình hành

suy ra \(CP//AB\).

c) \(BC=\frac{1}{2}PQ,BC//PQ\)nên \(BC\)là đường trung bình của tam giác \(PQR\).

Do đó \(B,C\)lần lượt là trung điểm của \(QR,PR\).

suy ra \(AC,AB\)là hai đường trung bình của tam giác \(PQR\)

suy ra \(AC=\frac{1}{2}QR,AB=\frac{1}{2}PR\).

\(P_{PQR}=PQ+QR+PR=2\left(AB+BC+CA\right)=2P_{ABC}\)

ta có đpcm. 

d) Có \(RA,PB,QC\)là ba đường trung tuyến trong tam giác \(PQR\)do đó chúng đồng quy tại một điểm.

Ta có đpcm. 

14 tháng 7 2021

cam on ban nhieu lam :))))))))))))))))))))))))))))))))))))))))