K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 2 2020

Câu a) là chứng minh tam giác BDI = tam giác FEI nha 

21 tháng 2 2020

Ta có: △△ABC cân tại A ⇒⇒ ABCˆ=ACBˆABC^=ACB^ (1)

DF//AC ⇒⇒ DF//EC ⇒⇒ {ACBˆ=DFBˆ(2)FDIˆ=IECˆ(3){ACB^=DFB^(2)FDI^=IEC^(3)

Từ (1);(2) ⇒⇒ ABCˆ=DFBˆABC^=DFB^

⇒⇒ △△DFB cân tại D

⇒⇒ BD=DF.

Mà BD=CE(gt) ⇒⇒ CE=DF.

Xét △△FDI và △△CEI có:

DF=CE(cmt)

FDIˆ=IECˆFDI^=IEC^ (cmt)

DI=IE(I là trung điểm DE)

⇒⇒ △△FDI = △△CEI (c-g-c)

⇒⇒ FIDˆ=EICˆFID^=EIC^

Ta có: DICˆ+CIEˆDIC^+CIE^ = 180o

Mà FIDˆ=EICˆFID^=EIC^ (cmt)

⇒⇒ DICˆ+DIFˆDIC^+DIF^ = 180o

⇒⇒ FICˆ=1800FIC^=1800

Hay BICˆ=1800BIC^=1800

⇒⇒ 3 điểm B,I,C thẳng hàng (đpcm)