Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài này ta chủ yếu chứng minh các tam giác bằng nhau.
a. Xét tam giác BDF cân do có : góc DBF = ACB(Tam giác ABC cân) = DFB (Đồng vị)
b. Xét tam giác FMD và tam giác CME có:
Góc FDM =góc MEC(so le trong)
góc DFM = góc MCE (So le trong)
DF = CE(=DB)
\(\Rightarrow\Delta FMD=\Delta CME\left(g-c-g\right)\Rightarrow MD=ME\) (Hai cạnh tương ứng)
c. Ta có \(\Delta DCM=\Delta EFM\left(c-g-c\right)\Rightarrow DC=EF\)
Bài này đáng lẽ phải là TRÊN TIA ĐỐI CA LẤY E SAO CHO BD=CE. Quên vẽ điểm F mà câu a) dễ nên tự thêm vô nha.
a) Ta có ^BFD = ^ACB ( DF // AC, đồng vị)
Mà ^ABC = ^ACB ( tam giác ABC cân tại A)
=> ^ABC = ^BFD
Vậy tam giác FBD cân tại D (đpcm)
b) Kẻ \(DM\perp BC;EN\perp BC\)
Ta thấy ngay: \(\Delta BDM=\Delta CEN\left(ch-gn\right)\)
=> MD = NE (hai cạnh tương ứng)
=> \(\Delta DMI=\Delta ENI\left(g.c.g\right)\)
=> DI = EI hay I là trung điểm của DE (đpcm)
c) Ta có: AD + AE = AB - BD + AC + CE = AB + AC = 2AB (không đổi)
=> đpcm...
Đề bị sai em kiểm tra lại đề đi! Chỗ trên AB lấy D , trên tia đối AC lấy E sao cho BD = CE ấy.