K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bạn tham khảo ở đây nhé!!

https://h.vn/hoi-dap/question/536969.html

hok tốt!!

20 tháng 3 2020

Bạn hỏi như vậy thì chắc có lẽ làm được câu a , b , c rồi , mình sẽ giải câu b ý 2

Hình bạn tự kẻ nha

Xét tam giác MDI và tam giác NEI có :  

       góc DMI = góc ENI (so le trong , MD song song với EN)

       DM = EN (câu a)

       góc MDI = góc NEI ( cùng bằng 90 dộ)

=> tam giác MDI = tam giác NEI

=> DI = EI

=> DI = IC + EC 

Ta có : BC = BD + DI + IC . Mà DI = IC + EC

=> BC = BD + IC + EC + IC . Mà BD = EC ( giả thiết)

=> BC = EC + IC + EC + IC

=> BC = 2(EC + IC)

=> BC = 2 EI

Xét tam giác vuông IEN vuông tại E có : IN là cạnh huyền

=> IN > EI hay EI < IN

=> 2 EI < 2 IN

=> BC < MN ( vì MN = 2 IN do I là trung điểm MN)

Học tốt

       

4 tháng 4 2018

Trả lời

Cậu xem tại link:

Câu hỏi của Nguyên Trinh Quang - Toán lớp 7 - Học toán với OnlineMath

~Hok tốt~

19 tháng 2 2019

                          Giải

a, Tam giác ABC có AB=AC (gt) => tam giác ABC cân tại A ( tính chất tam giác cân )

       do đó góc B = góc C ( hai góc ở đay )

  Ta có : góc ABC = góc ECN ( hai góc đối đỉnh )

Xet tam gic vg BDM va tam gic vg CEN co :

      BD=CE ( gt )

       góc ABD = góc ECN ( cùng bằng góc ACB ) 

=> tam giác vg BDM = tam giác vg ECN ( cạnh góc vuông và góc nhọn kề cạnh ấy )

  Do đó DM = EN  ( hai cạnh tương ứng )

b) Ta có: MD vuông góc với BE

              BE vuông góc với EN

=>MD//EN => góc DMI = góc INE(so le trong)

Xét tam giác MDI và tam giác IEN ta có:

MD=EN(vì tam giác MBD = tam giác CEN)

góc MDI = góc IEN(=90 độ)

góc DMI = góc INE(cmt)

=>tam giác MDI = tam giác IEN(CGV-GN)

=>IM=IN(ctư)

=>đường thẳng BC cắt MN tại trung điểm I của MN

c)Từ B và C kẻ các đường thẳng lần lượt vuông góc với AB và AC cắt nhau tại K

H là chân đường vuông góc kẻ từ A xuống BC

Xét tam giác ABK và tam giác ACK có 

AK là cạnh chung

AB=AC(cmt)

GocsBAK=góc KAC

suy ra tam giác ABK = tam giác ACK (c-g-c)

suy ra KB=KC nên K thuộc AH đường trung trực của BC

Mặt khác :Từ tam giác DMB=tam giác ENC(câu a)

Ta có : BM=CN

            BK=CK(cmt)

            góc MBK=góc NCK=90 độ

Nên tam giác BMK = tam giác CNK(c-g-c)

suy ra MK=NK hay đường trung trực của MN luôn đi qua điểm K cố định (đpcm)