K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 9 2019

2. 

Câu hỏi của Phan thanh hằng - Toán lớp 8 - Học toán với OnlineMath

23 tháng 3 2023
31 tháng 12 2021

a: Xét ΔABC có 

\(\dfrac{AD}{AB}=\dfrac{AE}{AC}\)

Do đó: DE//BC

hay BDEC là hình thang

mà \(\widehat{B}=\widehat{C}\)

nên BDEC là hình thang cân

1, Cho tam giác ABC vuông tại A, đường cao AH. Gọi I là trung điểm của AH, đường vuông góc với BC tại C cắt đường thẳng BI tại D. chứng minh AD=DC?2,Cho tứ giác ABCD, O là giao điểm của 2 đường chéo. Từ một điểm I bất kì trên đường chéo BD ta vẽ đường thẳng song song với đường chéo AC, đường thẳng này cắt các cạnh AB,BC tại P, Q và cắt các tia DA, DC tại S, R.chứng minh:a, =B, =*c, =3, cho...
Đọc tiếp

1, Cho tam giác ABC vuông tại A, đường cao AH. Gọi I là trung điểm của AH, đường vuông góc với BC tại C cắt đường thẳng BI tại D. chứng minh AD=DC?
2,Cho tứ giác ABCD, O là giao điểm của 2 đường chéo. Từ một điểm I bất kì trên đường chéo BD ta vẽ đường thẳng song song với đường chéo AC, đường thẳng này cắt các cạnh AB,BC tại P, Q và cắt các tia DA, DC tại S, R.chứng minh:
a, =
B, =*
c, =
3, cho hình thang ABCD (AB//CD) có M là giao điểm của AD và BC, N là giao điểm hai đường chéo. Gọi I, K theo thứ tự là giao điểm của MN với AB, CD. Chứng minh I là trung điểm của AB, K là trung điểm của CD
4, cho tam giác ABC có AB<AC, đường phân giác AD, đường trung tuyến AM. Trên cạnh AC lấy điểm E sao cho AE=AB. gọi O, G theo thứ tự là giao điểm của BE với AD, AM.
a, chứng minh DG//AB
b, gọi I là giao điểm của MO với DG. chứng minh DG=IG
5, cho tam giác ABC có AB=5 cm, AC=7 cm, đường trung tuyến AM. lấy điểm E thuộc cạnh AB, điểm F thuộc cạnh AC sao cho AE=AF= 3 cm. gọi I là giao điểm của EF và AM .chứng minh I là trung điểm của AM

2
28 tháng 2 2016

giúp mình với nha 

Câu 3:

Xét ΔMDC có AB//CD

nên MA/MD=MB/MC(1)

Xét ΔMDK có AI//DK

nên AI/DK=MA/MD(2)

Xét ΔMKC có IB//KC

nên IB/KC=MB/MC(3)

Từ (1), (2) và (3) suy ra AI/DK=IB/KC=MI/MK

Vì AI//KC nên AI/KC=NI/NK=NA/NC

Vì IB//DK nên IB/DK=NI/NK

=>AI/KC=IB/DK

mà AI/DK=IB/KC

nên \(\dfrac{AI}{KC}\cdot\dfrac{AI}{DK}=\dfrac{IB}{DK}\cdot\dfrac{IB}{DC}\)

=>AI=IB

=>I là trung điểm của AB

AI/DK=BI/KC

mà AI=BI

nên DK=KC

hay K là trung điểm của CD

28 tháng 7 2019

Hinh nhu de sai thi phai ban ah.Ban thu coi lai coi xem co dieu kien nao cua tam giac ABC khong ?

a)Vì I là trung điểm của BC

\(\Rightarrow\)AI là trung tuyến của \(\Delta ABC\)cân tại A

\(\Rightarrow AI\)là phân giác của \(\Delta ABC\)

\(\Rightarrow\widehat{BAM}=\widehat{CAM}\)

Vì \(\Delta ABC\)cân tại A \(\Rightarrow AB=AC\)

Xét \(\Delta BAM\)và \(\Delta CAM\),có:

\(\hept{\begin{cases}AB=AC\\\widehat{BAM}=\widehat{CAM}\\AM:chung\end{cases}}\)

\(\Rightarrow\Delta BAM=\Delta CAM\left(c.g.c\right)\)

\(\Rightarrow\widehat{ABM}=\widehat{ACM}\)(2 góc tương ứng)

Xét \(\Delta ABE\)và \(\Delta ACD\),có:

\(\hept{\begin{cases}\widehat{ABM}=\widehat{ACM}\\AB=AC\\\widehat{BAC}:chung\end{cases}}\)

\(\Rightarrow\Delta ABE=\Delta ACD\left(g.c.g\right)\)

\(\Rightarrow AE=AD\)(2 cạnh tương ứng)

\(\Rightarrow\Delta ADE\)cân tại A

\(\Rightarrow\widehat{ADE}=\frac{180^0-\widehat{BAC}}{2}\)

mà \(\Delta ABC\)cân tại A \(\Rightarrow\widehat{ABC}=\frac{180^0-\widehat{BAC}}{2}\)

\(\Rightarrow\widehat{ADE}=\widehat{ABC}\)

Mặt khác : \(\widehat{ADE}\)và \(\widehat{ABC}\)là 2 góc ở vị trí đồng vị

\(\Rightarrow DE//BC\)

\(\Rightarrow BDEC\)là hình thang

Ta có : \(\widehat{ABC}=\widehat{ACB}\)(do \(\Delta ABC\)cân tại A)

\(\Rightarrow BDEC\)là hình thang cân

b)Vì BDEC là hình thang cân \(\Rightarrow BD=CE\)

Ta có :BD=CE \(\Leftrightarrow\Delta BDE\)cân tại B

\(\Leftrightarrow\widehat{DBE}=\widehat{DEB}\)

mà \(\widehat{DEB}=\widehat{EBC}\)(do DE//BC)

\(\Leftrightarrow\widehat{DBE}=\widehat{EBC}\)

\(\Leftrightarrow BE\)là phân giác của \(\widehat{ABC}\)

hay \(BM\)là phân giác của \(\widehat{ABC}\)

Vậy khi M là 1 điểm nằm trên AI sao cho BM là phân giác của \(\widehat{ABC}\)thì BD=DE=CE

Bài 1: Cho tam giác ABC .Trên tia AC lấy điểm M sao cho AM = AB. Trên tia AB lấy điểm N sao cho AN = AC. Chứng minh tứ giác BMCN là hình thangBài 2: Cho tam giác ABC vuông tại A. Lấy điểm M thuộc cạnh BC sao cho AM= 1/2 BC, N là trung điểm cạnh AB. Chứng minh:a) Tam giác ABC cân ---- b) Tứ giác MNAC là hình thang vuông Bài 3: Cho hình thang cân ABCD ( AB // CD ) ---- a) Chứng minh góc ACD = góc BCD ---- b) Gọi E là giao điểm của...
Đọc tiếp

Bài 1: Cho tam giác ABC .Trên tia AC lấy điểm M sao cho AM = AB. Trên tia AB lấy điểm N sao cho AN = AC. Chứng minh tứ giác BMCN là hình thang

Bài 2: Cho tam giác ABC vuông tại A. Lấy điểm M thuộc cạnh BC sao cho AM= 1/2 BC, N là trung điểm cạnh AB. Chứng minh:

a) Tam giác ABC cân ---- b) Tứ giác MNAC là hình thang vuông 

Bài 3: Cho hình thang cân ABCD ( AB // CD ) ---- a) Chứng minh góc ACD = góc BCD ---- b) Gọi E là giao điểm của AC và BD. C/minh EA = EB

Bài 4: Cho ABCD là hình thang ( AB // CD, AB < CD ). Kẻ các đường cao AE,BF của hình thang. C/minh rằng DE = CF 

Bài 5: Cho ABCD là hình thang ( AB // CD ) có DB là đường phân giác góc D và AE là đường phân giác góc A ( E thuộc DC ). Biết AE // BC và O là giao điểm của AE với DB. CMR:

a) AE vuông góc với DB

b) AD // BE và AD = BE

c) E là trung điểm của DC 

d) Xác định dạng của tứ giác BCEO

e) Biết góc BEC = 80 độ. Hãy tính các góc của hình thang ABCD 

1

Bài 4:

Xét ΔAED vuông tại E và ΔBFC vuông tại F có

AD=BC

góc D=góc C

Do đó: ΔAED=ΔBFC

=>DE=CF
Bài 3:

a: Xét ΔADC và ΔBCD có

AD=BC

AC=BD

DC chung

Do đó: ΔADC=ΔBCD

=>góc ACD=góc BDC

b: Ta co: góc ACD=góc BDC

=>góc EAB=góc EBA
=>ΔEAB cân tại E