Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a.2ab=am+an
=> 2ab=am+ac+cn
=> ....=am+ab+cn
=> ab=am+cn
=> am+bn=am+cn
=> bm = cn
b. BC cắt MN tại I
vẽ NE // BC ( e thuộc ab kéo dài )
suy ra gốc aABC = gốc AEN
gốc AEN = góc ABC
mà góc ABC = góc ACB ( ABC cân tại A)
hình thang BCNE là hình thang cân
=> CN = BE
mà CN = BM ( câu a )
=> Bm = BE
BI // NE
BI là đường trung bình MNE=> MI=IN
k mk nhá tks bn
a.2ab=am+an
=> 2ab=am+ac+cn
=> ....=am+ab+cn
=> ab=am+cn
=> am+bn=am+cn
=> bm = cn
b. BC cắt MN tại I
vẽ NE // BC ( e thuộc ab kéo dài )
suy ra gốc aABC = gốc AEN
gốc AEN = góc ABC
mà góc ABC = góc ACB ( ABC cân tại A)
hình thang BCNE là hình thang cân
=> CN = BE
mà CN = BM ( câu a )
=> Bm = BE
BI // NE
BI là đường trung bình MNE=> MI=IN
Hình bạn tự vẽ nha :))
a)* Ta có: \(\Delta ABC\)cân tại A <=> AB=AC
\(\hept{\begin{cases}AM=AB+MB\\AN=AC+NC\end{cases}\Rightarrow AM=AN}\)(do \(AB=AC;MB=NC\))
\(\Rightarrow\Delta AMN\)cân tại A
* Từ \(\Delta ABC\)cân tại A, có: \(\widehat{ABC}=\frac{180^o-\widehat{A}}{2}\)(1)
Từ \(\Delta AMN\)cân tại A, có: \(\widehat{AMN}=\frac{180^o-\widehat{A}}{2}\)(2)
Từ (1) và (2), suy ra: \(\widehat{ABC}=\widehat{AMN}\)
\(\Rightarrow MN//BC\)(2 góc đồng vị bằng nhau)
b) Xét \(\Delta ABI\)và \(\Delta ACI\)có:
\(\hept{\begin{cases}AB=AC\\AIchung\\IB=IC\end{cases}\Rightarrow\Delta ABI=\Delta}ACI\left(ccc\right)\)
\(\Rightarrow\widehat{BAI}=\widehat{CAI}\)(2 góc tương ứng)
\(\Rightarrow AI\)là p/giác của \(B\widehat{A}C\) (3)
Tương tự, ta có: \(\widehat{MAE}=\widehat{NAE}\)
\(\Rightarrow AE\)là p/ giác của \(\widehat{BAC}\)(4)
Từ (3) và (4), ta có: A,I,E thẳng hàng