Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Ta có : \(\Delta\)ABC cân tại A (gt)
\(\Rightarrow\)Góc B = góc \(C_1\)
Mà góc \(C_1=C_2\)(đối đỉnh)
\(\Rightarrow\)Góc B = góc \(C_2\)
Xét \(\Delta BDH\)\(\perp H\)(DH\(\perp\)BC) và \(\Delta CEK\perp K\)(EK \(\perp\)BC) có :
BD=CE (gt)
Góc B = góc C\(_2\)(cmt)
\(\Rightarrow\Delta BDH=\Delta CEK\)(ch-gn)
\(\Rightarrow DH=EK\)( 2 cạnh tg ứng)
Vậy...
b, Ta có : DH và EK cùng vuông góc vs BC (gt)
\(\Rightarrow\)DH \(//\)EK (Quan hệ từ vuông góc đến song song)
\(\Rightarrow\)Góc HDI = góc IEC ( 2 góc so le trong )
Xét \(\Delta HDI\perp H\left(DH\perp BC\right)\)và \(\Delta KEI\perp K\left(EK\perp BC\right)\)có :
DH=CE (\(\Delta BEH=\Delta CEK\))
Góc HDI = góc IEC (cmt)
\(\Rightarrow\)\(\Delta HDI=\Delta KEI\)(cgv-gnk)
\(\Rightarrow DI=EI\)( 2 cạnh tg ứng )
Mà D,I,E thẳng hàng ( DE và BC cắt nhau tại I )
\(\Rightarrow\)I là trung điểm của BC
Vậy...
Chúc bn hok tốt
1/. Ta có: B = C (tam giác ABC cân tại A)
Vì DI // AC => ACB = DIB (so le trong)
=> ABC = DIB ( = ACB) => tam giác BDI cân => BD = DI (1)
Xét tam giác DEI và tam giác CIE, có:
CIE = DEI ( DE // BC và so le trong)
IE cạnh chung
DIE = CEI ( DI // AC và so le trong)
=> tam giác DEI = CIE (g.c.g)
=> CE = DI (2)
Từ 1 và 2 => BD = DI = CE
2/. Vì CE = CF (gt) và CE = DI (cmt) => CF = DI
Vì ACI = DIB (cmt)
mà: ACI + FCI = DIB + DIK (=180) (hai góc kề bù)
=> FCI = DIK
Xét tam giác DIK và tam giác FCK, có:
IDK = CFK (DI // AF và so le trong)
DI = CF (cmt)
DIK = FDI (cmt)
=> tam giác DIK = tam giác FCK (g.c.g)
=> DK = KF (2 cạnh tương ứng =)