K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 3 2021

Bạn tự vẽ hình nhé 

CM : 

a, Xét tam giác ABM và tam giác ACM , ta có :

                       góc AMB = góc AMC ( =90 o )

                      AB = AC (Vì tam giác ABC cân tại A)

                      AM : Cạnh chung 

=>  Tam giac ABM = tam giác ACM ( cạnh huyền - cạnh góc vuông )

còn cách thứ 2 nữa ( theo trường hợp cạnh huyền góc nhọn ) nhưng mình chỉ làm 1 cách thôi 

b, Vì tam giác ABM = tam giác ACM ( chứng minh câu a ) 

=> góc EAM  = góc FAM ( 2 góc tương ứng )

=> góc EAM = góc FAM ( 2 gó tương ứng )

Xét tam giác EAM và tam giác FAM , ta có :

      gÓC EAM = góc FAM  ( 90 o ) 

     AM : cạnh chung 

    góc EAM = góc FAM ( cmt )

    AM : cạnh chung 

=> tam giác AEM = tam giác AFM ( cạnh huyền - góc nhọn ) 

=> ME = MF ( 2 cạnh tương ứng ) 

c, Vì tam giác AEM = tam giác AFM ( chứng minh câu b)

=> AE = AF ( 2 cạnh tương ứng )

Vậy tam giác AEF cân tại A 

17 tháng 3 2021

Bạn tự vẽ hình nhé 

CM : 

a, Xét tam giác ABM và tam giác ACM , ta có :

                       góc AMB = góc AMC ( =90 o )

                      AB = AC (Vì tam giác ABC cân tại A)

                      AM : Cạnh chung 

=>  Tam giac ABM = tam giác ACM ( cạnh huyền - cạnh góc vuông )

còn cách thứ 2 nữa ( theo trường hợp cạnh huyền góc nhọn ) nhưng mình chỉ làm 1 cách thôi 

b, Vì tam giác ABM = tam giác ACM ( chứng minh câu a ) 

=> góc BAM  = góc CAM  ( 2 góc tương ứng )

=> góc EAM = góc FAM ( 2 gó tương ứng )

Xét tam giác EAM và tam giác FAM , ta có :

      gÓC EAM = góc FAM  ( 90 o ) 

     AM : cạnh chung 

    góc EAM = góc FAM ( cmt )

    AM : cạnh chung 

=> tam giác AEM = tam giác AFM ( cạnh huyền - góc nhọn ) 

=> ME = MF ( 2 cạnh tương ứng ) 

c, Vì tam giác AEM = tam giác AFM ( chứng minh câu b)

=> AE = AF ( 2 cạnh tương ứng )

Vậy tam giác AEF cân tại A 

a) Xét ΔAEC vuông tại E và ΔADB vuông tại D có 

AC=AB(ΔABC cân tại A)

\(\widehat{BAD}\) chung

Do đó: ΔAEC=ΔADB(cạnh huyền-góc nhọn)

Suy ra: AE=AD(hai cạnh tương ứng)

Xét ΔAED có AE=AD(cmt)

nên ΔAED cân tại A(Định nghĩa tam giác cân)

1.Cho tam giác ABC có AB=3cm,AC=4cm,BC=5cma) Chứng tỏ tam giác ABC vuông tại A.b) Trên tia đối của tia AC lấy điểm D sao cho CD=6cm.Tính độ dài đoạn thẳng BD.2.Cho tam giác ABC, biết AB = 12cm,AC = 9cm,BC = 15cm.a) Chứng tỏ tam giác ABC vuông.b) Kẻ AH vuông góc với BC tại H, biết AH = 7,2cm.Tính độ dài đoạn thẳng BH và HC.3.Cho tam giác nhọn ABC(AB<AC). Kẻ AH vuông góc với BC tại H. Tính chu vi tam giác ABC biết AC =...
Đọc tiếp

1.Cho tam giác ABC có AB=3cm,AC=4cm,BC=5cm

a) Chứng tỏ tam giác ABC vuông tại A.

b) Trên tia đối của tia AC lấy điểm D sao cho CD=6cm.Tính độ dài đoạn thẳng BD.

2.Cho tam giác ABC, biết AB = 12cm,AC = 9cm,BC = 15cm.

a) Chứng tỏ tam giác ABC vuông.

b) Kẻ AH vuông góc với BC tại H, biết AH = 7,2cm.Tính độ dài đoạn thẳng BH và HC.

3.Cho tam giác nhọn ABC(AB<AC). Kẻ AH vuông góc với BC tại H. Tính chu vi tam giác ABC biết AC = 20cm, AH = 12cm, BH = 5cm.

4.Cho tam giác ABC cân tại A, kẻ AH vuông góc với BC

a) Chứng minh tam giác AHB = tam giác AHC

b) Từ H kẻ HM vuông góc với AB tại M. Trên cạnh AC lấy điểm N sao cho BM = CN. Chứng minh HN vuông góc AC.

5.Cho tam giác ABC cân tại A, tia phân giác của góc A cắt BC tại I

a) Chứng minh tam giác AIB = tam giác AIC

b) Lấy M là trung điểm AC. Trên tia đối của tia MB lấy điểm D sao cho MB = MD. Chứng minh AD song song BC và AI vuông góc AD.

c) Vẽ AH vuông góc BD tại H, vẽ CK vuông góc BD tại K. Chứng minh BH = DK.

6.Cho tam giác ABC vuông tại A, đường phân giác BD. Kẻ AE vuông góc BD(E thuộc BD). AE cắt BC ở K.

a) Chứng minh tam giác ABE = tam giác KBE và suy ra tam giác BAK cân.

b) Chứng minh tam giác ABD = tam giác KBD và DK vuông góc BC.

c) Kẻ AH vuông góc BC(H thuộc BC). Chứng minh AK là tia phân giác của HAC.

Mọi người vẽ hình lun 6 bài giúp mình nha! Mình đang cần gấp!:(

5
7 tháng 4 2020

Ai đó giúp mình với! Mình đang cần gấp!:( Các bạn vẽ hình lun giúp mình nha! Cảm ơn các bạn nhìu!:)

8 tháng 4 2020

Do tam giác ABC có

AB = 3 , AC = 4 , BC = 5

Suy ra ta được

(3*3)+(4*4)=5*5  ( định lý pi ta go) 

9 + 16 = 25

Theo định lý py ta go thì tam giác abc vuông tại A

17 tháng 11 2018

Bài 1: Tam giác ABC cân tại A ( góc A > 90 độ). Hai đường cao BD và CE cắt nhau tại H. Tia AH cắt BC tai Ia) Chứng minh tam giác ABD = tam giác ACEb) Chứng minh I là trung điểm của BCc) Từ C kẻ đường thẳng d vuông góc với AC. d cắt đường thẳng AH tại F. Chứng minh CB là tia phân giác của góc FCHd) Giả sử góc BAC = 60 độ, AB = 4cm. Tính khoảng cách từ B đến đường thẳng CFBài 2: Tam giác ABC vuông tại A...
Đọc tiếp

Bài 1: Tam giác ABC cân tại A ( góc A > 90 độ). Hai đường cao BD và CE cắt nhau tại H. Tia AH cắt BC tai I

a) Chứng minh tam giác ABD = tam giác ACE

b) Chứng minh I là trung điểm của BC

c) Từ C kẻ đường thẳng d vuông góc với AC. d cắt đường thẳng AH tại F. Chứng minh CB là tia phân giác của góc FCH

d) Giả sử góc BAC = 60 độ, AB = 4cm. Tính khoảng cách từ B đến đường thẳng CF

Bài 2: Tam giác ABC vuông tại A có AB = 9cm, AC = 12cm. Trên cạnh BC lấy điểm D sao cho BD = BA. Kẻ đường thẳng qua D vuông góc với BC, đường thẳng này cắt AC ở E và cắt AB ở K

a) Tính độ dài cạnh BC

b) Chứng minh tam giác ABE = tam giác DBE. Suy ra BE là tia phân giác góc ABC

c)  Chứng minh AC = DK

d) Kẻ đường thẳng qua A vuông góc với BC tại H. Đường thẳng này cắt BE tại M. Chứng minh tam giác AME cân

Các bạn làm hộ mình nha, mình cần gấp lắm

1

nhìu zữ giải hết chắc chết!!!

758768768978980

a: \(\widehat{CAI}+\widehat{BAI}=90^0\)

\(\widehat{CIA}+\widehat{HAI}=90^0\)

mà \(\widehat{BAI}=\widehat{HAI}\)

nên \(\widehat{CAI}=\widehat{CIA}\)

hay ΔCIA cân tại C

b: Xét ΔBAD có 

BH là đường cao

BH là đường trung tuyến

Do đó: ΔBAD cân tại B

Xét ΔIAD có 

IH là đường cao

IH là đường trung tuyến

Do đó: ΔIAD cân tại I

Ta có: \(\widehat{IDA}=\widehat{IAD}\)

\(\widehat{IDB}=\widehat{IAB}\)

mà \(\widehat{IAD}=\widehat{IAB}\)

nên \(\widehat{IDA}=\widehat{IDB}\)

hay DI là tia phân giác của góc BDA