K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Ta có: ΔABC cân tại A(gt)

\(\Leftrightarrow\widehat{ABC}=\widehat{ACB}\)(hai góc ở đáy)

\(\widehat{ABD}=\frac{\widehat{ABC}}{2}\)(BD là tia phân giác của \(\widehat{ABC}\))

\(\widehat{ACE}=\frac{\widehat{ACB}}{2}\)(CE là tia phân giác của \(\widehat{ACB}\))

nên \(\widehat{ABD}=\widehat{ACE}\)

Xét ΔABD và ΔACE có

\(\widehat{ABD}=\widehat{ACE}\)(cmt)

AB=AC(ΔABC cân tại A)

\(\widehat{A}\) chung

Do đó: ΔABD=ΔACE(g-c-g)

\(\Rightarrow\)BD=CE(hai cạnh tương ứng)

10 tháng 3 2017

a, △ABE=△ACD (g.c.g) vì AB=AC;A^ chung; ABE^=ACD^=4502
⇒BE=CD;AE=AD;AEB^=ADC^

b, △BDI=△CEI (g.c.g) vì BD=EC(=AB−AD);BDI^=IEC^(=1800−BEA^);ABE^=ACD^=4502
⇒ID=IE

△ADI=△AEI (c.g.c) vì AD=AE;ADC^=AEB^;ID=IE
⇒DAI^=EAI^=9002=450

△AMC có CAM^=MCA^=450⇒△AMC vuông cân tại M.

Chứng minh tương tự có △AMB vuông cân tại M.

c, Gọi F là giao điểm của BE và AK.

△BAF=△BKF (g.c.g) vì BFA^=BFK^=900;BF chung ABF^=KBF^=4502
⇒AB=BK

Chứng minh tương tự có ⇒BD=BH ⇒HK=AD(1)

△ABE=△KBE (c.g.c) vì AB=BK;ABE^=KBE^=4502;BE chung.
⇒AE=EK;BKE^=BAE^=900

⇒EK⊥BC hay △EKC vuông cân tại K⇒KC=KE=AE=AD(2)

Từ (1) và (2) ⇒HK=CK

13 tháng 5 2016

Ta có CE vuông góc AB (GT)

suy ra CE là đường cao (1)

Ta có BD vuông góc AC(GT)

suy ra BD là đường cao (2)

Mà BD giao CE tại H 

Từ (1) và (2) suy ra H là trực tâm (định nghĩa )

suy ra AM vuông góc BC (1)

Ta có tam giác ABC cân tại A (GT)

suy ra AB=AC (định nghĩa ) 

Ta có AM vuông góc BC (CMT)

suy ra góc AMB = góc AMC = 90

Xét tam giác AMB và tam giác AMC có 

AM chung 

góc AMB = góc AMC =90

AB= AC(CMT)

suy ra tam giác AMB = tam giác AMC (ch-cgv)

suy ra M là trung điểm BC (2)

Từ (1) và (2) suy ra AM là đường trung trực của BC

OK rồi đó

23 tháng 2 2018

a, Vì tam giác ABC cân tại A

=>AB=AC

Xét tam giác DAB và tam giác EAC có:

AB=AC (cmt)

\(\widehat{A}\) chung

\(\widehat{ADB}=\widehat{AEC}\) \(=90^0\)

=>Tam giác DAB=Tam giác EAC (c.h-g.n)

=>AE=AD (2 cạnh tương ứng)

=>Tam giác ADE là tam giác cân tại A

23 tháng 2 2018

b, Xét tam giác AHE và tam giác AHD có:

AH cạnh chung

\(\widehat{AEH}=\widehat{ADH}\left(=90^0\right)\)

AE=AD (cmt)

=>Tam giác AHE=tam giác AHD (c.h-c.g.v)

=>\(\widehat{EAH}=\widehat{DAH}\)

=>AH là tia phân giác của \(\widehat{BAC}\)

BÀI 1: Cho tam giác ABC cân tại A. Gọi M là trung điểm của cạnh BC.a) Chứng minh: Tam giác ABM = tam giác ACM.b) Từ M vẽ MH vuông góc AB và MK vuông góc AC.Chứng minh: BH = CK.c) Từ B vẽ BP vuông góc AC, BP cắt MH tại I.Chứng minh: Tam giác IBM cân.BÀI 2: Cho tam giác ABC vuông tại A, có AB = 4cm, BC = 5cm.a) Tính độ dài cạnh AC.b) Tia phân giác của góc ABC cắt AC tại D. Kẻ DE vuông góc BC, tia ED...
Đọc tiếp

BÀI 1: Cho tam giác ABC cân tại A. Gọi M là trung điểm của cạnh BC.

a) Chứng minh: Tam giác ABM = tam giác ACM.

b) Từ M vẽ MH vuông góc AB và MK vuông góc AC.

Chứng minh: BH = CK.

c) Từ B vẽ BP vuông góc AC, BP cắt MH tại I.

Chứng minh: Tam giác IBM cân.

BÀI 2: Cho tam giác ABC vuông tại A, có AB = 4cm, BC = 5cm.

a) Tính độ dài cạnh AC.

b) Tia phân giác của góc ABC cắt AC tại D. Kẻ DE vuông góc BC, tia ED cắt tia BA tại F.

Chứng minh: DC = DF.

c) Chứng minh: AE song song FC. ( AE // FC )

BÀI 3: Cho tam giác ABC cân tại A. ( A^ < 90* ), vẽ BD vuông góc AC và CE vuông góc AB. Gọi H là giao điểm của BD và CE.

a) Chứng minh: Tam giác ABD = tam giác ACE.

b) Chứng minh: Tam giác AED cân.

c) Chứng minh: AH là đường trung trực của ED.

b) Trên tia đối của tia DB lấy điểm K sao cho DK = DB.

Chứng minh: ECB^ = DKC^.

#helpme

#mainopbai

 

 

5
24 tháng 4 2017

Bài 3

a) Xét tam giác ABD vuông tại D và tam giác ACE vuông tại E có

AB=AC( vì tam giác ABC cân tại A)

Góc A chung

=> Tam giác ABD= tam giác ACE ( cạnh huyền- góc nhọn)

b) Có tam giác ABD= tam giác ACE( theo câu a)

=> AE=AD ( 2 cạnh tương ứng)

=> Tam giác AED cân tại A

c) Xét các tam giác vuông AEH và ADH có

Cạnh huyền AH chung

AE=AD

=> Tam giác AEH=tam giác ADH ( cạnh huyền- cạnh góc vuông)

=>HE=HD

Ta có AE=AD và HE=HD hay AH là đường trung trực của ED

d) Ta có AB=AC, AE=AD

=>AB-AE=AC-AD

=>EB=DC

Xét tam giác EBC vuông tại E và tam giác DCK vuông tại D có

BD=DK

EB=Dc

=> tam giác EBC= tam giác DCK ( 2 cạnh góc vuông)

=> Góc ECB= góc DEC ( 2 góc tương ứng)

24 tháng 4 2017

Bài 1:

Xét tam giác ABM và tam giác ACM có:

AB=AC(tam giác ABC cân tại A)

BM=MC(gt)

AM cạnh chung

Suy ra tam giác ABM= tam giác ACM (c-c-c)

b) Xét hai tam giác vuông MBH và MCK có:

BM=MC(gt)

góc ABC=góc ACB (tam giác ABC cân tại A)

Suy ra tam giác MBH= tam giác MCK (ch-gn)

Suy ra BH=CK

c) MK vuông góc AC (gt)

BP vuông góc AC (gt)

Suy ra MK sông song BD

Suy ra góc B1= góc M2 (đồng vị)

Mà M1=M2(Tam giác HBM= tam giác KCM)

Suy ra góc B1= góc M1

Suy ra tam giác IBM cân

xong bài 1 đẻ bài 2 mình nghĩ tiếp

21 tháng 7 2019

a) Xét tam giác DBM và tam giác ABM có:

BM: là cạnh huyền (vừa cạnh chung)

^MDB = ^MAB = 90o

^DBM = ^ABM (giả thiết do BM là tia phân giác)

\(\Rightarrow\)\(\Delta\)DBM = \(\Delta\) ABM (cạnh huyền - góc nhọn)

\(\Rightarrow\) AB = BD

b) Xét \(\Delta\) ABC và \(\Delta\) DBE có:

AB = BD (CMT)

^B chung

^BAC = ^EDB = 90o

\(\Rightarrow\) \(\Delta\) ABC = \(\Delta\) DBE (cạnh góc vuông - góc nhọn kề cạnh ấy)

c) (không chắc nha). Từ đề bài suy ra ^NHM = ^NKM = 90o (kề bù với ^DHM = ^AKM = 90o, giả thiết)

Từ đó, ta có N cách đều hai tia MH, MK nên nằm trên đường phân ^HMK hay MN là tia phân giác ^HMK.

d)(không chắc luôn:v) Ta sẽ chứng minh BN là tia phân giác ^ABC.

Thật vậy, từ N, hạ NF vuông góc BC, hạ NG vuông góc với AB.

Đến đấy chịu, khi nào nghĩ ra tính tiếp.

a)Xét ∆ vuông BAM và ∆ vuông BDM ta có : 

BM chung 

ABM = DBM ( BM là phân giác) 

=> ∆BAM = ∆BDM ( ch-gn)

=> BA = BD 

AM = MD

b)Xét ∆ vuông ABC và ∆ vuông DBE ta có : 

BA = BD 

B chung 

=> ∆ABC = ∆DBE (cgv-gn)

c) Xét ∆ vuông AKM và ∆ vuông DHM ta có : 

AM = MD( cmt)

AMK = DMH ( đối đỉnh) 

=> ∆AKM = ∆DHM (ch-gn)

=> MAK = HDM ( tương ứng) 

Xét ∆AMN và ∆DNM ta có : 

AM = MD 

MN chung 

MAK = HDM ( cmt)

=> ∆AMN = ∆DNM (c.g.c)

=> DNM = ANM ( tương ứng) 

=> MN là phân giác AND 

d) Vì MN là phân giác AND 

=> M , N thẳng hàng (1)

Vì BM là phân giác ABC 

=> B , M thẳng hàng (2)

Từ (1) và (2) => B , M , N thẳng hàng 

1 tháng 3 2020

a, Ta có: góc ABE = góc EBC = góc ABC/2 

góc ACD = góc DCB = góc ACB/2

mà góc ABC = góc ACB (tg ABC cân tại A)

=> góc ABE = góc EBC = góc ACD = góc DCB

Xét tg ABE và tg ACD có:

góc A chung

AB = AC (tg ABC cân tại A)

góc ABE = góc ACD (cmt)

=>tg ABE = tg ACD (g.c.g)

=> AE=AD

=>tg AED cân tại A

b, Xét tg ABC cân tại A có: góc ABC = góc ACB = (180 độ - góc A)/2

Xét tg AED cân tại A có: góc ADE = góc AED =(180 độ - góc A)/2

=> góc ABC = góc ADE

Mà 2 góc này ở vị trí đồng vị

=>DE//BC

c, DE//BC => góc BED = góc EBC (slt) ; góc CDE = góc DCB (slt)

=> góc BED = góc DBE (góc DBE = góc EBC)

=> tg BDE cân tại D => BE = ED (1)

DE//BC =>  góc CDE = góc DCB (slt)

=> góc CDE = góc DCE (góc DCE = góc DCB)

=> tg DEC cân tại E => ED = DC (2)

Từ (1),(2)=>đpcm

1 tháng 3 2020

Hình vẽ: 

A B C E F 1 2 1 1 2

\(\widehat{B_2}=\frac{180^0-\widehat{A}}{4};\widehat{C_2}=\frac{180^0-\widehat{A}}{4}\)

\(\Rightarrow\widehat{B_2}=\widehat{C_2}\)

\(\Rightarrow\Delta BCE=\Delta CBD\left(g.c.g\right)\)

\(\Rightarrow\widehat{B}=\widehat{C}\)( tính chất tam giác cân )

BC là cạnh chung

\(\widehat{C_2}=\widehat{B_2}\left(cmt\right)\)

\(\Rightarrow BE=DC\)( 2 cạnh tương ứng )

\(AB=AC\)( tam giác ABC cân tại A )

\(AE=AB-BE,AD=AC-DC\)

\(\Rightarrow AE=AD\)

\(\Rightarrow\Delta ADE\)cân tại A

\(\widehat{E_1}=\frac{180^0-\widehat{A}}{2};\widehat{B}=\frac{180^0-\widehat{A}}{2}\)

\(\Rightarrow\widehat{E_1}=\widehat{B}\)( 2 góc đồng vị )

\(\Rightarrow ED//BC\)

\(\Rightarrow\widehat{B_2}=\widehat{EDB}\left(slt\right)\)

mà \(\widehat{B_1}=\widehat{B_2}\)( vì BD là tia phân giác )

\(\Rightarrow\widehat{B_1}=\widehat{EDB}\)

\(\Rightarrow\Delta EBD\)cân tại E, ta có: 

\(BE=ED\)

mà \(BE=DC\)

\(\Rightarrow BE=ED=DC\)