K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Xét ΔAHM vuông tại M và ΔAHN vuông tại N có

AH chung

\(\widehat{MAH}=\widehat{NAH}\)(AH là tia phân giác của \(\widehat{MAN}\))

Do đó: ΔAHM=ΔAHN(cạnh huyền-góc nhọn)

 

Câu a bạn có chép sai ko vậy?

Giải

b)Xét tam giác BAH và CAH có:

AB=AC(gt)

góc B =góc C(gt)

AH chung

\(\Rightarrow\)tam giác BAH =CAH (c.g.c)

\(\Rightarrow\)góc BAH=CAH (2 góc t/ư)

Mặt khác AH nằm giữa AB và AC ,chia góc A thành 2 góc bằng nhau 

Mà H là trung điểm BC

\(\Rightarrow\)AH là tia phân giác góc A và vuông góc BC

 

a: Ta có: ΔAHB vuông tại H

=>\(AH^2+HB^2=AB^2\)

=>\(AH^2=10^2-6^2=64\)

=>\(AH=\sqrt{64}=8\left(cm\right)\)

b: Xét ΔAHB vuông tại H và ΔAHC vuông tại H có

AB=AC

AH chung

Do đó: ΔAHB=ΔAHC

=>\(\widehat{BAH}=\widehat{CAH}\)

=>AH là phân giác của góc BAC

c: Ta có: ΔAHB=ΔAHC

=>BH=CH

Xét ΔBMH vuông tại M và ΔCNH vuông tại N có

BH=CH

\(\widehat{B}=\widehat{C}\)

Do đó: ΔBMH=ΔCNH

d: Xét ΔABO vuông tại B và ΔACO vuông tại C có

AO chung

AB=AC

Do đó: ΔABO=ΔACO

=>OB=OC

=>ΔOBC cân tại O

a: Xét ΔAHB vuông tại H và ΔAHC vuông tại H có

AB=AC

AH chung

Do đó: ΔAHB=ΔAHC

Ta có: ΔABC cân tại A

mà AH là đường cao

nên AH là đường phân giác

b: Xét ΔAMH vuông tại M và ΔANH vuông tại N có

AH chung

\(\widehat{MAH}=\widehat{NAH}\)

DO đó; ΔAMH=ΔANH

Suy ra: AM=AN và HM=HN

=>AH là đường trung trực của MN

hay AH\(\perp\)MN

4 tháng 5 2024

c, Xét ▲AMK và ▲ANK có:                

Góc K1 = K2 ( Ah vuông với Mn)

Ak chung

A1=A2 (cmt)

Sra ▲AMK = ▲ANK ( cgv-gn)

Do đó MK = NK ( 2 cạnh tương ứng)

Xét ▲NMP có: 

NH là trung tuyến (do HM=HP)

PK là trung tuyến ( do MK = NK) cmt (1)

Suy ra Q là trọng tâm △NMP (2)

Từ (1) và (2) suy ra P,Q,K thẳng hàng

`#3107.101107`

`a,`

Xét $\triangle ABH$ và $\triangle ACH$:

`AB = AC` $(\triangle ABC$cân tại A`)`

\(\widehat{B}=\widehat{C}\) $(\triangle ABC$cân tại A`)`

`HB = HC ( H` là trung điểm của BC`)`

$=> \triangle ABH = \triangle ACH (c - g - c)$

Vì $\triangle ABH = \triangle ACH$

`=>`\(\widehat{AHB}=\widehat{AHC}\left(\text{2 góc tương ứng}\right)\)

Mà `2` góc này nằm ở vị trí kề bù

`=>` \(\widehat{AHB}+\widehat{AHC}=180^0\)

`=>` \(\widehat{AHB}=\widehat{AHC}=\dfrac{180^0}{2}=90^0\) `=> AH \bot BC`

`b,`

Vì $\triangle ABH = \triangle ACH (a)$

`=>`\(\widehat{BAH}=\widehat{CAH}\left(\text{2 góc tương ứng}\right)\)

Xét $\triangle AHM$ và $\triangle AHN$:

AH chung

\(\widehat{MAH}=\widehat{NAH}\left(CMT\right)\)

\(\widehat{AMH}=\widehat{ANH}\left(=90^0\right)\)

$=> \triangle AHM = \triangle AHN (ch - gn)$

`c,`

Xét $\triangle HMB$ và $\triangle HNC$:

\(\widehat{HMB}=\widehat{HNC}\left(=90^0\right)\)

`HB = HC` `(`gt`)`

\(\widehat{HBM}=\widehat{HCN}\) $(\triangle ABC$ cân tại A`)`

$=> \triangle HMB = \triangle HNC (ch - gn)$

`=>`\(\widehat{BHM}=\widehat{CHN}\left(2\text{ góc tương ứng}\right)\) `(1)`

Vì \(\left\{{}\begin{matrix}\widehat{MHB}+\widehat{KHB}=\widehat{MHK}\\\widehat{NHC}+\widehat{IHC}=\widehat{NHI}\end{matrix}\right.\)

Mà \(\widehat{MHK}=\widehat{NHI}\left(\text{đối đỉnh}\right)\) `(2)`

Từ `(1)` và `(2)` `=>` \(\widehat{KHB}=\widehat{IHC}\)

Xét $\triangle KHB$ và $\triangle IHC$:

\(\widehat{KBH}=\widehat{ICH}\left(\widehat{ABC}=\widehat{ACB}\right)\)

`HB = HC`

\(\widehat{KHB}=\widehat{IHC}\)

$=> \triangle KHB = \triangle IHC (g - c - g)$

`=> BK = CI` `(2` cạnh tương ứng`)`

Ta có:

`AK = AB + BK`

`AI = AC + CI`

Mà `AB = AC; BK = CI`

$=> AK = AI => \triangle AIK$ cân tại A.

loading...

5 tháng 3 2018

c)Xét \(\Delta\)vuông MHC và \(\Delta\)vuông QHB, ta có: 

  \(\widehat{MCH}=\widehat{QBH}\)\(\Delta ABC\)cân tại A)

\(HC=HB\)(chứng minh câu a)

\(\Rightarrow\)\(\Delta\)vuông MHC = \(\Delta\)vuông QHB ( ch-gn)

\(\Rightarrow\widehat{MHC}=\widehat{QHB}\)mà \(\widehat{MHC}=\widehat{BHN}\left(dd\right)\Rightarrow\widehat{QHB}=\widehat{BHN}\)

Gọi K là trung điểm NQ

Xét tam giác KHQ và tam giác KHN, ta có:

HQ=HN( cùng bằng HM) 

\(\widehat{QHK}=\widehat{KHN}\)(cmt)

\(HK\): cạnh chung

\(\Rightarrow\)tam giác KHQ = tam giác KHN (c.g.c)

\(\Rightarrow\)\(\widehat{K_1}=\widehat{K_2}=90^o\)và QK = KN \(\Rightarrow HB\)là trung trực của NQ hay là BC là trung trực của NQ.

2 tháng 4 2020

đòng nghĩa với dung cảm